2024 Vol. 40, No. 1
Article Contents

ZHU Zhi-Peng, WANG Lian-Xun, ZHU Yu-Xiang, LI Le-Guang, MAChang-Qian. 2024. Petrogenesis and Geological Implications of the Early Cretaceous Tangchi Alkaline Intrusive Rocks Within the Dabie Orogen. South China Geology, 40(1): 28-55. doi: 10.3969/j.issn.2097-0013.2024.01.002
Citation: ZHU Zhi-Peng, WANG Lian-Xun, ZHU Yu-Xiang, LI Le-Guang, MAChang-Qian. 2024. Petrogenesis and Geological Implications of the Early Cretaceous Tangchi Alkaline Intrusive Rocks Within the Dabie Orogen. South China Geology, 40(1): 28-55. doi: 10.3969/j.issn.2097-0013.2024.01.002

Petrogenesis and Geological Implications of the Early Cretaceous Tangchi Alkaline Intrusive Rocks Within the Dabie Orogen

More Information
  • Corresponding author: WANG Lian-Xun  
  • An integrated study, involving petrology, zircon U-Pb geochronology, and lithogeochemistry and zircon Lu-Hf isotope, was conducted on the Early Cretaceous alkaline rocks in the Tangchi area of the eastern Beihuaiyang of the Dabie orogen, aiming to constrain its petrogenesis and tectonic implications. The alkaline rock suites consist of syenogranite, quartz syenite, and syenite porphyry, accompanied by dolerite. Zircon U-Pb dating reveals that dolerite, syenogranite, and syenite porphyry were formed at 130.3±1.7 Ma, 128.4±1.7 Ma and 122.3±1.5 Ma, respectively, indicating that these rocks were products of Early Cretaceous magmatism. The dolerite exhibits low SiO2 (45.23~56.92 wt.%) and high Na2O+K2O contents (5.24~8.04 wt.%) and relatively high Mg# values (average of 48). Other rock types are characterized by high SiO2 (62.44~77.25 wt.%) and Na2O+K2O contents (7.97~10.35 wt.%), along with low CaO concentrations, as well as elevated Ga/Al and FeOT/MgO ratios, similar to typical A-type granites. The zircon εHf(t) values of the dolerite range from -6.4 to -2.9, with whole rock Nb/Ta ratio of 17.1~22.0 (close to the mantle value of 17.5), indicating that these rocks were formed via partial melting of an enriched mantle. The Tangchi A-type granites yield richer Hf component and much lower εHf(t) values (-23.3 ~ -3.5) and whole rock Nb/Ta ratio (11.2~22.7, average of 16.5), suggesting that the A-type alkaline magmas have been produced primarily by partial melting of the lower crust caused by the emplacement of the mantle-derived mafic magmas. Together with regional data, it is proposed that the Dabie orogeny was in transition from the collisional extrusion during the Early Cretaceous to subsequent post-collisional extension.
  • 加载中
  • [1] 安徽省地矿局313 地质队.1995.河棚幅H-50-30-B 大关幅H-50-31-A桐城幅H-50-30-D孔城幅H-50-31-C1/5 万区域地质调查报告[R].

    Google Scholar

    [2] 安徽省地质调查院.2011.六安市幅(I50C001002)1:250000区域地质调查报告[R].

    Google Scholar

    [3] 陈芳,彭智,邱军强,董婷婷,柳丙全.2016.安徽金寨岩体地质和地球化学特征及LA-ICP-MS 锆石U-Pb 年龄[J].地质学报,90(5):879-895.

    Google Scholar

    [4] 陈玲,马昌前,张金阳,刘园园,佘振兵,张超.2012.首编大别造山带侵入岩地质图(1:50 万)及其说明[J].地质通报,31(1):13-20.

    Google Scholar

    [5] 陈伟,徐兆文,李红超,杨小男,陈进全,王浩,王少华.2013.河南新县花岗岩岩基的岩石成因、来源及对西大别构造演化的启示[J].地质学报,87(10):1510-1524.

    Google Scholar

    [6] 董传万,徐夕生,闫强,林秀斌,竺国强.2007.浙东晚中生代壳幔相互作用的新例证—新昌儒岙辉绿岩-花岗岩复合岩体的年代学与地球化学[J]. 岩石学报,23(6):1303-1312.

    Google Scholar

    [7] 贾小辉,王强,唐功建.2009.A 型花岗岩的研究进展及意义[J].大地构造与成矿学,33(3):465-480.

    Google Scholar

    [8] 李良林,周汉文,陈植华,王锦荣,陈正华,肖依.2013.福建太姥山地区和鼓山地区A型花岗岩对比及其地球动力学意义[J].现代地质,27(3):509-524.

    Google Scholar

    [9] 刘晓强,闫峻,王爱国.2018.北淮阳汞洞冲铅锌矿区石英正长斑岩成因[J].地质学报,92(1):41-64.

    Google Scholar

    [10] 鹿献章,周博文,彭智,邱军强,陈芳,董婷婷,柳丙全,陈志洪.2017. 北淮阳东段河棚岩体地球化学特征、LA-ICP-MS锆石U-Pb 年龄及地质意义[J].华东地质,38(2):81-90.

    Google Scholar

    [11] 马昌前,杨坤光,许长海,李志昌.1999.大别山中生代钾质岩浆作用与超高压变质地体的剥露机理[J].岩石学报,15(3):379-395.

    Google Scholar

    [12] 任志,周涛发,袁峰,张达玉,范裕,范羽.2014.安徽沙坪沟钼矿区中酸性侵入岩期次研究——年代学及岩石化学约束[J].岩石学报,30(4):1097-1116.

    Google Scholar

    [13] 商力.2012.安徽北淮阳地区燕山晚期岩浆岩成因及其大地构造背景[D].南京大学硕士学位论文.

    Google Scholar

    [14] 苏玉平,唐红峰,侯广顺,刘丛强.2006.新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究[J].地球化学,35(1):55-67.

    Google Scholar

    [15] 万俊,吴波,郭盼,刘万亮,刘成新.2017.西大别造山带夏店岩体锆石U-Pb 年代学、地球化学特征及其A型花岗岩的厘定[J].岩石矿物学杂志,36(5):633-645.

    Google Scholar

    [16] 王爱枝.2009.河南商城汤家坪铝质A型花岗岩的地球化学特征及其构造指示意义[J]. 华南地质与矿产,25(4):10-16.

    Google Scholar

    [17] 王德滋,赵广涛,邱检生.1995.中国东部晚中生代A型花岗岩的构造制约[J].高校地质学报,1(2):13-21.

    Google Scholar

    [18] 王对兴,管琪,高万里,李春麟,张聚全,赵凯华.2019.浙东天台地区早白垩世花岗岩及暗色包体锆石U-Pb 年龄,地球化学及其成因[J].中国地质,46(6):1512-1529.

    Google Scholar

    [19] 王强,赵振华,熊小林.2000.桐柏-大别造山带燕山晚期A型花岗岩的厘定[J].岩石矿物学杂志,19(4):297-306.

    Google Scholar

    [20] 王世明,马昌前,王琳燕,张金阳,杨颖.2010.大别山早白垩世基性脉岩SHRIMP锆石U-Pb 定年、地球化学特征及成因[J].地球科学,35(4):572-584.

    Google Scholar

    [21] 王玉玺,王金荣,周小玲,王怀涛,第鹏飞,王晓伟,陈万峰.2017.Columbia 超大陆裂解:来自塔里木克拉通东南缘大红山A型花岗岩的证据[J].地质学报,91(11):2369-2386.

    Google Scholar

    [22] 吴福元,李献华,杨进辉,郑永飞.2007.花岗岩成因研究的若干问题[J].岩石学报,23(6):1217-1238.

    Google Scholar

    [23] 吴皓然,谢玉玲,钟日晨,王莹.2020.大别造山带银水寺铅锌矿区正长花岗斑岩脉锆石U-Pb 年代学、地球化学特征和地质意义[J].地球科学,45(3):910-929.

    Google Scholar

    [24] 吴齐,牛漫兰,朱光,王婷,费玲玲.2016.郯庐断裂带庐江段长岗A型花岗岩锆石U-Pb定年、岩石成因及其意义[J].岩石学报,32(4):1031-1048.

    Google Scholar

    [25] 吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,49(16):1589-1604.

    Google Scholar

    [26] 谢智,郑永飞,闫峻,钱卉.2004.大别山沙村中生代A型花岗岩和基性岩的源区演化关系[J]. 岩石学报,20(5):1175-1184.

    Google Scholar

    [27] 谢玉玲,李腊梅,郭翔,张健,姚羽,王爱国.2015.安徽西冲钼矿床细粒花岗岩的岩石定年、岩石化学及与成矿的关系研究[J].岩石学报,31(7):1929-1942.

    Google Scholar

    [28] 徐树桐,江来利,刘贻灿,张勇.1992.大别山(安徽部分)的构造格局和演化过程[J].地质学报,66(1):1-14.

    Google Scholar

    [29] 徐夕生,周新民,王德滋.1999.壳幔作用与花岗岩成因——以中国东南沿海为例[J].高校地质学报,5(3):241-250.

    Google Scholar

    [30] 许保良,阎国翰,张臣.1998.A 型花岗岩的岩石学亚类及其物质来源[J].地学前缘,5:113-125.

    Google Scholar

    [31] 杨春玥,何俊,杨一增,陈福坤.2020.大别山造山带新县二长花岗岩体地球化学与岩石成因[J].高校地质学报,26(2):132-146.

    Google Scholar

    [32] 杨义忠,王徽,蔡杨,李明辉,柳丙全.2018.北淮阳东段西汤池岩体地球化学特征、锆石U-Pb 定年及成因[J].地质学刊,42(2):188-196.

    Google Scholar

    [33] 杨泽强.2007.河南省商城县汤家坪钼矿成矿模式研究[D].中国地质大学(北京)硕士学位论文.

    Google Scholar

    [34] 尤静静,吴昌雄,蒋之飞,屠江海,陈松,肖霞,李随云,叶建华.2019.湖北大悟娘娘顶花岗岩地球化学特征及其地质意义[J].资源环境与工程,33(1):14-21.

    Google Scholar

    [35] 张徐,张达玉,蒋华,李光惠,付翔,詹建华.2019.安徽霍山陈家湾岩体地球化学特征、年代学及其地质意义[J].合肥工业大学学报(自然科学版),42(7):988-998.

    Google Scholar

    [36] 张怀东,王波华,郝越进,程松,项斌.2012.安徽沙坪沟斑岩型钼矿床地质特征及综合找矿信息[J].矿床地质,31(1):41-51.

    Google Scholar

    [37] 郑永飞.2008.超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例[J].科学通报,53(18):2129-2152.

    Google Scholar

    [38] 周红升,马昌前,张超.2008.华北克拉通南缘泌阳春水燕山期铝质A型花岗岩类年代学、地球化学及其启示[J].岩石学报,24(1):49-64.

    Google Scholar

    [39] 周红升,苏华,马昌前.2009a.灵山岩体的形成时代、构造背景及其A型花岗岩的厘定[J].信阳师范学院学报(自然科学版),22(2):222-226.

    Google Scholar

    [40] 周红升,马昌前,陈玲.2009b.大别造山带研子岗碱性岩体成因及其构造意义:锆石U-Pb 年龄和地球化学制约[J].岩石学报,25(5):1079-1091.

    Google Scholar

    [41] 周泰禧,陈江峰,张巽,李学明.1995.北淮阳花岗岩-正长岩带地球化学特征及其大地构造意义[J].地质论评,41(2):144-151.

    Google Scholar

    [42] 周伟伟,蔡剑辉,阎国翰,王亚莹,闫星光,闫志娇.2014.安徽金寨响洪甸碱性侵入岩年代学、岩石地球化学及其意义[J].矿床地质,33(1):104-122.

    Google Scholar

    [43] 周新民,李武显.2000.中国东南部晚中生代火成岩成因岩石圈消减和玄武岩底侵相结合的模式关系[J].自然科学进展,1:240-247.

    Google Scholar

    [44] Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48(1): 43-55.

    Google Scholar

    [45] Boehnke P, Watson E B, Trail D, Harrison T M, Schmitt A. 2013. Zircon saturation re-revisited[J]. Chemical Geology, 351: 324-334. Chen J F, Jahn B M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics, 284(1-2): 101-133.

    Google Scholar

    [46] Chen J F, Yan J, Xie Z, Xu X, Xing F. 2001. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China: constraints on sources[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 719-731.

    Google Scholar

    [47] Chen L, Ma C Q, She Z B, Mason R, Zhang J Y, Zhang C. 2009. Petrogenesis and tectonic implications of A-type granites in the Dabie orogenic belt, China: geochronological and geochemical constraints[J]. Geological Magazine, 146(5): 638-651.

    Google Scholar

    [48] Condie K C, Pisarevsky S A, Puetz S J, Roberts N M W, Spencer C J. 2023. A-type granites in space and time: Relationship to the supercontinent cycle and mantle events[J]. Earth and Planetary Science Letters, 610: 118125.

    Google Scholar

    [49] Cong B L, Wang Q C, Zhai M G, Zhang R Y, Zhao Z H, Ye K. 1994. Ultrahigh pressure metamorphic rocks in the Dabie-Su Lu region, China: Their formation and exhumation[J]. The Island Arc, 3(13): 135-150.

    Google Scholar

    [50] Dai F Q, Zhao Z F, Dai L Q, Zheng Y F. 2016. Slab-mantle interaction in the petrogenesis of andesitic magmas: geochemical evidence from postcollisional intermediate volcanic rocks in the Dabie Orogen, China[J]. Journal of Petrology, 57(6): 1109-1134.

    Google Scholar

    [51] Dai F Q, Zhao Z F, Zheng, Y F. 2017. Partial melting of the orogenic lower crust: Geochemical insights from post-collisional alkaline volcanics in the Dabie orogen[J]. Chemical Geology, 454: 25-43.

    Google Scholar

    [52] De la Roche H D, Leterrier J T, Grandclaude P, Marchal M. 1980. A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses—its relationships with current nomenclature[J]. Chemical Geology, 29(1-4): 183-210.

    Google Scholar

    [53] Dong Y P, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling orogenic belt, Central China[J]. Gondwana Research, 29(1): 1-40.

    Google Scholar

    [54] Duchesne J C, Wilmart E. 1997. Igneous charnockites and related rocks from the Bjerkreim-Sokndal layered intrusion (Southwest Norway): a jotunite (hypersthene monzodiorite)-derived A-type granitoid suite[J]. Journal of Petrology, 38(3): 337-369.

    Google Scholar

    [55] Eby G N. 1990. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 26: 115-134.

    Google Scholar

    [56] Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 20(7): 641-644.

    Google Scholar

    [57] Ferry J M, Waston E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 154(4): 429-437.

    Google Scholar

    [58] Floyd P A, Winchester J A. 1975. Magma type and tectonic setting discrimination using immobile elements[J]. Earth and Planetary Science Letters, 27(2): 211-218.

    Google Scholar

    [59] Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 120(3-4): 347-359.

    Google Scholar

    [60] Hoskin P W O. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 69(3): 637-648.

    Google Scholar

    [61] Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M, Chen H H, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399.

    Google Scholar

    [62] Jahn B M, Wu F Y, Lo C H, Tsai C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology, 157(1-2): 119-146.

    Google Scholar

    [63] Jiang X Y, Ling M X, Wu K. 2018. Insights into the origin of coexisting A1- and A2-type granites: Implications from zircon Hf-O isotopes of the Huayuangong intrusion in the Lower Yangtze River Belt, Eastern China[J]. Lithos, 318: 230-243.

    Google Scholar

    [64] Kamaunji V D, Wang L X, Ahmed H A, Zhu Y X, Vincent V I, Girei M B. 2020. Coexisting A1 and A2 granites of Kudaru Complex: implications for genetic and tectonic diversity of A-type granite in the Younger Granite province, north-central Nigeria[J]. International Journal of Earth Sciences, 109: 511-535.

    Google Scholar

    [65] King P L, White A J R, Chappell B W. 1997. Characterization and origin of aluminous A type granites of the Lachalan Fold Belt, southeastern Australia[J]. Journal of Petrology, 36: 371-391.

    Google Scholar

    [66] Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In Situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257: 34-43.

    Google Scholar

    [67] Loiselle M C, Wones D R. 1979. Characteristics and origin of anorogenic granites[A]. Geological Society of America, Abstracts with Programs, 11: 468.

    Google Scholar

    [68] Ma C Q, Ehlers C, Xu C H, Li Z C, Yang K G. 2000. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane: constraints from geochemistry and Nd-Sr isotope systematics[J]. Precambrian Research, 102(3-4): 279-301.

    Google Scholar

    [69] Ma Q, Zheng J P, Griffin W L, Zhang M, Tang H Y, Su Y P, Ping X Q. 2012. Triassic“Adakitic”Rocks in an Extensional Setting (North China): Melts from the Cratonic Lower Crust[J]. Lithos, 149:159-173.

    Google Scholar

    [70] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101: 635-643.

    Google Scholar

    [71] Martin R F. 2006. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment[J]. Lithos, 91(1-4): 125-136.

    Google Scholar

    [72] Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 56(3-4): 207-218.

    Google Scholar

    [73] Middlemost E A. 1975. The basalt clan[J]. Earth-Science Reviews, 11(4): 337-364.

    Google Scholar

    [74] Miller C F, McDowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 31(6): 529-532.

    Google Scholar

    [75] Munker C, Pfander J A, Weyer S, Buchl A, Kleine T, Mezger K. 2003. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics[J]. Science, 301(5629): 84-87.

    Google Scholar

    [76] Nardi L V S, Bonin B. 1991. Post-orogenic and non-orogenic alkaline granites associations: The Saibro intrusive suite, southern Brazil-A case study[J]. Chemical Geology, 92: 197-211.

    Google Scholar

    [77] Pearce J A, Cann J R. 1973. Tectonoic setting of basic volcanic rocks determined using trace element analyse[J]. Earth and Planetary Science Letters, 19(2): 290-300.

    Google Scholar

    [78] Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 69(1): 33-47.

    Google Scholar

    [79] Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries[A].//Thrope R S. Andesites: Orogenic Andesites and Related rocks. John Wiley and Sons, Chichester: 528-548.

    Google Scholar

    [80] Pearce J A. 1996. Source and settings of granitic rocks[J]. Episodes, 19(4): 120-125.

    Google Scholar

    [81] Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81.

    Google Scholar

    [82] Rapp R P, Watson, E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 36(4): 891-931.

    Google Scholar

    [83] Shellnutt J G, Zhou M F. 2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume[J]. Chemical Geology, 243(3-4): 286-316.

    Google Scholar

    [84] Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 219(3-4): 311-324.

    Google Scholar

    [85] Stepanov A S, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the“missing Nb paradox”[J]. Geology, 41(3): 303-306.

    Google Scholar

    [86] Sun S S, McDonough W F. 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 42(1): 313-345.

    Google Scholar

    [87] Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 33: 241-165.

    Google Scholar

    [88] Tischendorf G, Palchen W. 1985. Composition of the continental crust[J]. Zeitschrift Fuer Geologische Wissenschaften, 13(5): 615-627.

    Google Scholar

    [89] Wang Q, Wyman D A, Xu J F, Jian P, Zhao Z H, Li C F, Xu W, Ma J L, He B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 71(10): 2609-2636.

    Google Scholar

    [90] Wang Y J, Fan W M, Pen T P, Zhang H F, Guo F. 2005. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie Orogen, Central China: evidence from40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotopic compositions of early Cretaceous mafic igneous rocks[J]. Chemical Geology, 220(3-4): 165-189.

    Google Scholar

    [91] Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407-419.

    Google Scholar

    [92] Wu F Y, Sun D Y, Li H M, Jahn B M, Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187(1-2): 143-173.

    Google Scholar

    [93] Xie L, Wang R C, Chen X M, Qiu J S, Wang D Z. 2005. Th-rich zircon from peralkaline A-type granite: Mineralogical features and petrological implications[J]. Chinese Science Bulletin, 50(8): 809-817.

    Google Scholar

    [94] Xu H J, Ma C Q, Song Y R, Zhang J Y. 2012. Early Cretaceous intermediate-mafic dykes in the Dabie orogen, eastern China: Petrogenesis and implications for crust-mantle interaction[J]. Lithos, 154: 83-99.

    Google Scholar

    [95] Xu H J, Ma C Q, Ye K. 2007. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry[J]. Chemical Geology, 240(3-4): 238-259.

    Google Scholar

    [96] Yan Q S, Shi X F, Castill P R. 2014. The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: A petrologic perspective[J]. Journal of Asian Earth Sciences, 85: 178-201.

    Google Scholar

    [97] Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S, Wu F Y. 2006. Zircon isotope evidence for ≥ 3.5 Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 146(1-2): 16-34.

    Google Scholar

    [98] Zheng Y F. 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt[J]. Chinese Science Bulletin, 53: 3081-3104.

    Google Scholar

    [99] Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution[J]. Episodes, 29(1): 26-33.

    Google Scholar

    [100] Zhu Y X, Wang L X, Ma C Q, He Z X, Deng X, Tian Y. 2022. Petrogenesis and tectonic implication of the Late Triassic A1-type alkaline volcanics from the Xiangride area, eastern segment of the East Kunlun Orogen (China)[J]. Lithos, 412: 106595.

    Google Scholar

    [101] Zhu Y X, Wang L X, Xiong Q H, Ma C Q, Zhang X, Zhang C, Ahmed H A. 2020. Origin and evolution of ultrapotassic intermediate magma: The Songxian syenite massif, Central China[J]. Lithos, 366: 105554.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(472) PDF downloads(49) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint