[1] |
胡健民,孟庆任,石玉若,渠洪杰.2005.松潘-甘孜地块内花岗岩锆石SHRIMP U-Pb 定年及其构造意义[J].岩石学报,21(3):867-880.
Google Scholar
|
[2] |
刘伯根,郑光财,陈时淼,唐红峰.1995.浙西松木坞群的解体——同位素定年的证据[J].地质论评,41(5):457-462.
Google Scholar
|
[3] |
舒良树,施央申,郭令智.1995.江南中段板块-地体构造与碰撞造山运动学[M].南京:南京大学出版社.
Google Scholar
|
[4] |
舒良树,周国庆.1988.赣北元古代地体拚贴带中高压变质矿物的发现及其构造意义[J].南京大学学报(自然科学版),24(3):421-429.
Google Scholar
|
[5] |
王孝磊.2006.江南造山带西段中-新元古代构造—岩浆演化[D].南京大学博士学位论文.
Google Scholar
|
[6] |
魏君奇,王建雄.2012.崆岭杂岩中斜长角闪岩包体的锆石年龄和Hf同位素组成[J].高校地质学报,18(4):589-600.
Google Scholar
|
[7] |
吴荣新,郑永飞,吴元保.2005.皖南蛇绿岩套辉长岩锆石U-Pb 定年以及元素和氧同位素研究[J].地球学报,26(S1):70-73.
Google Scholar
|
[8] |
吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,49(16):1589-1604.
Google Scholar
|
[9] |
殷桂芹,陈友良,张宝玲,顾孟娟,王勤,姚建,尹观.2022.四川米易垭口地区前震旦纪五马箐组与其侵入岩体的锆石U-Pb 年代学、Lu-Hf 同位素特征及其地质意义[J].岩石学报,38(4):1126-1148.
Google Scholar
|
[10] |
曾雯,周汉文,钟增球,曾昭光,李惠民.2005.黔东南新元古代岩浆岩单颗粒锆石U-Pb 年龄及其构造意义[J].地球化学,34(6):548-556.
Google Scholar
|
[11] |
张欣,徐学义,宋公社,王洪亮,陈隽璐,李婷.2010.西秦岭略阳地区鱼洞子杂岩变形花岗岩锆石LA-ICP-MS U-Pb测年及地质意义[J].地质通报,29(4):510-517.
Google Scholar
|
[12] |
钟玉芳,马昌前,佘振兵,林广春,续海金,王人镜,杨坤光,刘强.2005. 江西九岭花岗岩类复式岩基锆石SHRIMP U-Pb年代学[J].地球科学,30(6):685-691.
Google Scholar
|
[13] |
周国庆,舒良树,吴洪亮.1989.与赣东北元古代蛇绿岩有关的高温、高压变质岩和重变质作用机制的讨论[J].岩石矿物学杂志,8(3):220-231+219.
Google Scholar
|
[14] |
Andersen T, van Niekerk H, Elburg M A. 2022. Detrital zircon in an active sedimentary recycling system: Challenging the‘source-to-sink’approach to zircon-based provenance analysis[J]. Sedimentology, 69: 2436-2462.
Google Scholar
|
[15] |
Anderson J B, Wallace D J, Simms A R, Rodriguez A B, Weight R W R, Taha Z P. 2016. Recycling sediments between source and sink during a eustatic cycle: Systems of late Quaternary northwestern Gulf of Mexico Basin[J]. Earth-Science Reviews, 153: 111-138.
Google Scholar
|
[16] |
Balan E, Neuville D R, Trocellier P, Fritsch E, Muller J P, Calas G. 2001. Metamictization and chemical durablity of detrital zircon[J]. American Mineralogist, 86: 1025-1033.
Google Scholar
|
[17] |
Barham M, Kirkland C L, Hovikoski J, Alsen P, Hollis J, Tyrrell S. 2021. Reduce or recycle? Revealing source to sink links through integrated zircon-feldspar provenance fingerprinting[J]. Sedimentology, 68: 531-556.
Google Scholar
|
[18] |
Basu A, Schieber J, Patranabis-Deb S, Dhang P C. 2013. Recycled detrital quartz grains are sedimentary rock fragments indicating unconformities: examples from the Chhattisgarh Supergroup, Bastar Craton, India[J]. Journal of Sedimentary research, 83: 368-376.
Google Scholar
|
[19] |
Bernet M. 2009. A field-based estimate of the zircon fission-track closure temperature[J]. Chemical Geology, 259: 181-189.
Google Scholar
|
[20] |
Campbell I H, Reiners PW, Allen C M, Nicolescu S, Upadhyay R. 2005. He-Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and provenance studies[J]. Earth and Planetary Science Letters, 237: 402-432.
Google Scholar
|
[21] |
Cawood P A, Hawkesworth C J, Dhuime B. 2012. Detrital zircon record and tectonic setting[J]. Geology, 40: 875-878.
Google Scholar
|
[22] |
Cawood P A, Nemchin A A, Freeman M, Sircombe K. 2003. Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies[J]. Earth and Planetary Science Letters, 210:259-268.
Google Scholar
|
[23] |
Cawood P A, Wang W, Zhao T, Xu Y, Mulder J A, Pisarevsky S A, Zhang L, Gan C, He H, Liu H, Qi L, Wang Y, Yao J, Zhao G, Zhou M F, Zi J W. 2020. Deconstructing South China and consequences for reconstructing Nuna and Rodinia[J]. Earth Science Reviews, 204: 103169.
Google Scholar
|
[24] |
Chen J F, Foland K A, Xing F M, Xu X, Zhou T X. 1991. Magmatism along the southeast margin of the Yangtze block: Precambrian collision of the Yangtze and Cathysia blocks of China[J]. Geology, 19: 815-818.
Google Scholar
|
[25] |
Chen K, Gao S, Wu Y B, Guo J L, Hu Z C, Liu Y S, Zong K Q, Liang Z W, Geng X L. 2013. 2.6-2.7Ga crustal growth in Yangtze craton, South China[J]. Precambrian Research, 224: 472-490.
Google Scholar
|
[26] |
Chen Z H, Xing G F. 2016. Geochemical and zircon U-Pb-Hf-O isotopic evidence for a coherent Paleoproterozoic basement beneath the Yangtze Block, South China[J]. Precambrian Research, 279: 81-90.
Google Scholar
|
[27] |
Chew D, O’Sullivan G, Caracciolo L, Mark C, Tyrrell S. 2020. Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis[J]. Earth-Science Reviews, 202: 103093.
Google Scholar
|
[28] |
Chmura G L, Smirnov A, Campbell I D. 1999. Pollen transport through distributaries and depositional patterns in coastal waters[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 149: 257-270.
Google Scholar
|
[29] |
Cui X Z, Ren G M, Pang W H, Chen F L, Sun Z M, Ren F, Ning K B, Deng Q. 2022. Detrital zircon provenance of metasedimentary rocks in the Proterozoic Caiziyuan-Tongan accretionary complex: Constraints on crustal and tectonic evolution of the Yangtze Block, South China[J]. Geological Journal, 57: 2094-2109.
Google Scholar
|
[30] |
Cui X Z, Wang J, Ren G M, Deng Q, Sun Z M, Ren F, Chen F L. 2020. Paleoproterozoic tectonic evolution of the Yangtze Block: New evidence from ca. 2.36 to 2.22 Ga magmatism and 1.96 Ga metamorphism in the Cuoke complex, SW China[J]. Precambrian Research, 337: 105525.
Google Scholar
|
[31] |
Cui X Z, Wang J, Sun Z M, Wang W, Deng Q, Ren G M, Liao S Y, Huang M D, Chen F L, Ren F. 2019. Early Paleoproterozoic(ca. 2.36 Ga)post-collisional granitoids in Yunnan, SW China: Implications for linkage between Yangtze and Laurentia in the Columbia supercontinent[J]. Journal of Asian Earth Sciences, 169: 308-322.
Google Scholar
|
[32] |
Cui X Z, Wang J, Wang X C, Wilde S A, Ren G M, Li S, Deng Q, Ren F, Liu J. 2021. Early crustal evolution of the Yangtze Block: Constraints from zircon U-Pb-Hf isotope systematics of 3.1-1.9 Ga granitoids in the Cuoke Complex, SW China[J]. Precambrian Research, 357: 106155.
Google Scholar
|
[33] |
Dhuime B, Hawkesworth C J, Cawood P A, Storey C D. 2012. A Change in the Geodynamics of Continental Growth 3 Billion Years Ago[J]. Science, 335: 1334-1336.
Google Scholar
|
[34] |
Dhuime B, Hawkesworth C J, Delavault H, Cawood P A. 2017. Continental growth seen through the sedimentary record[J]. Sedimentary Geology, 357: 16-32.
Google Scholar
|
[35] |
Dickinson W R, Gehrels G E. 2008. U-Pb Ages of detrital zircons in relation to paleogeography: Triassic paleodrainage networks and sediment dispersal across Southwest Laurentia[J]. Journal of Sedimentary Research, 78: 745-764.
Google Scholar
|
[36] |
DickinsonWR, Gehrels G E. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 288: 115-125.
Google Scholar
|
[37] |
Dickinson W R, Gehrels G E. 2010. Insights into North American Paleogeography and Paleotectonics from U-Pb ages of detrital zircons in Mesozoic strata of the Colorado Plateau, USA[J]. International Journal of Earth Sciences, 99: 1247-1265.
Google Scholar
|
[38] |
Dickinson W R. 2008. Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis[J]. Earth and Planetary Science Letters, 275: 80-92.
Google Scholar
|
[39] |
Dong C Y, Li C L, Wan Y S, Wang W, Wu YW, Xie H Q, Liu D Y. 2011. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet: Constraint on tectonic affinity and source regions[J]. Science China Earth Sciences, 54: 1034-1042.
Google Scholar
|
[40] |
Dong Y P, Genser J, Neubauer F, Zhang G W, Liu X M, Yang Z, Heberer B. 2011. U-Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling terrane, China[J]. Gondwana Research, 19(4): 881-893.
Google Scholar
|
[41] |
Dröllner M, Barham M, Kirkland C L, Roberts M P. 2023. Older than they look: Cryptic recycled xenotime on detrital zircon[J]. Geology, 51: 768-772.
Google Scholar
|
[42] |
Dröllner M, Barham M, Kirkland C L. 2022. Gaining from loss: Detrital zircon source-normalized α-dose discriminates first- versus multi-cycle grain histories[J]. Earth and Planetary Science Letters, 579: 117346.
Google Scholar
|
[43] |
Edwards K J, Fyfe R M, Hunt C O, Schofield J E. 2015. Moving forwards? Palynology and the human dimension[J]. Journal of Archaeological Science, Scoping the Future of Archaeological Science: Papers in Honour of Richard Klein, 56: 117-132.
Google Scholar
|
[44] |
Edwards K J, Pardoe H S. 2018. How palynology could have been paepalology: the naming of a discipline[J]. Palynology, 42: 4-19.
Google Scholar
|
[45] |
Enkelmann E, Sanchez Lohff S K, Finzel E S. 2019. Detrital zircon double-dating of forearc basin strata reveals magmatic, exhumational, and thermal history of sediment source areas[J]. Geological Society of America Bulletin, 131: 1364-1384.
Google Scholar
|
[46] |
Enkelmann E, Weislogel A, Ratschbacher L, Eide E, Renno A, Wooden J. 2007. How was the Triassic Songpan-Ganzi basin filled? A provenance study[J]. Tectonics, 26(4): TC4007.
Google Scholar
|
[47] |
Evans J, Zalasiewicz J. 1996. U-Pb, Pb-Pb and Sm-Nd dating of authigenic monazite: implications for the diagenetic evolution of the Welsh Basin[J]. Earth and Planetary Science Letters, 144: 421-433.
Google Scholar
|
[48] |
Fedo C M, Sircombe K N, Rainbird R H. 2003. Detrital Zircon Analysis of the Sedimentary Record[J]. Reviews in Mineralogy and Geochemistry, 53: 277-303.
Google Scholar
|
[49] |
Gan C S, Qian, X, Zhang Y Z, Bai T X, Wang Y J. 2023. Provenance variation of the Cambrian-Ordovician sedimentary rocks across South China and implication for its paleogeography in East Gondwana[J]. Lithos, 454-455: 107242.
Google Scholar
|
[50] |
Gao J, Klemd R, Long L L, Xiong X M, Qian Q. 2009. Adakitic signature formed by fractional crystallization: An interpretation for the Neo-Proterozoic meta-plagiogranites of the NE Jiangxi ophiolitic mélange belt, South China[J]. Lithos, 110: 277-293.
Google Scholar
|
[51] |
Gao S, Yang J, Zhou L, Li M, Hu Z C, Guo J L, Yuan H L, Gong H, Xiao G H, Wei J Q. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of Science, 311: 153-182.
Google Scholar
|
[52] |
Garzanti E, Andò S, France-Lanord C, Vezzoli G, Censi P, Galy V, Najman Y. 2010. Mineralogical and chemical variability of fluvial sediments: 1. Bedload sand (Ganga-Brahmaputra, Bangladesh) [J]. Earth and Planetary Science Letters, 299: 368-381.
Google Scholar
|
[53] |
Garzanti E, Limonta M, Resentini A, Bandopadhyay P C, Najman Y, Andò S, Vezzoli G. 2013a. Sediment recycling at convergent plate margins(Indo-Burman Ranges and Andaman-Nicobar Ridge)[J]. Earth-Science Reviews, 123: 113-132.
Google Scholar
|
[54] |
Garzanti E, Padoan M, Andò S, Resentini A, Vezzoli G, Lustrino M. 2013b. Weathering and Relative Durability of Detrital Minerals in Equatorial Climate: Sand Petrology and Geochemistry in the East African Rift[J]. The Journal of Geology, 121: 547-580.
Google Scholar
|
[55] |
Gehrels G, 2014. Detrital zircon U-Pb geochronology applied to tectonics[J]. Annual Review of Earth and Planetary Sciences, 42: 127-149.
Google Scholar
|
[56] |
Gehrels G, Rusmore M, Woodsworth G, Crawford M, Andronicos C, Hollister L, Patchett J, Ducea M, Butler R, Klepeis K, Davidson C, Friedman R, Haggart J, Mahoney B, Crawford W, Pearson D, Girardi J. 2009. U-Th-Pb geochronology of the Coast Mountains batholith in north-coastal British Clumbia: Constraints on age and tectonic evolution[J]. Geological Society of America Bulletin, 121: 1341-1361.
Google Scholar
|
[57] |
Greentree M R, Li Z X. 2008. The oldest known rocks in south-western China: SHRIMP U-Pb magmatic crystallization age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group[J]. Journal of Asian Earth Sciences, 33: 289-302.
Google Scholar
|
[58] |
Guo J L, Gao S, Wu Y B, Li M, Chen K, Hu Z C, Liang Z W, Liu Y S, Zhou L, Zong K Q, Zhang W, Chen H H. 2014. 3.45Ga granitic gneisses from the Yangtze Craton, South China: Implications for Early Archean crustal growth[J]. Precambrian Research, 242: 82-95.
Google Scholar
|
[59] |
Guo J L, Wu Y B, Gao S, Jin Z M, Zong K Q, Hu Z C, Chen K, Chen H H, Liu Y S. 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) granitoid magmatismin Yangtze Craton, South China: implications for late Archean tectonics[J]. Precambrian Research, 270: 246-266.
Google Scholar
|
[60] |
Guo L Z, Shi Y S, Lu H F, Ma R S, Dong H G, Yang S F. 1989. The pre-Devonian tectonic patterns and evolution of South China[J]. Journal of Southeast Asian Earth Sciences, 3: 87-93.
Google Scholar
|
[61] |
Guo R H, Hu X M, Garzanti E, Lai W, Yan B, Mark C. 2020. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Tibet[J]. Earth-Science Reviews, 201: 103082.
Google Scholar
|
[62] |
Guo Y L, Yang S Y, Su N, Li C, Yin P, Wang Z B. 2018. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices[J]. Geochimica et Cosmochimica Acta, 227: 48-63.
Google Scholar
|
[63] |
Hadlari T, Swindles G T, Galloway J M, Bell K M, Sulphur K C, Heaman L M, Beranek L P, Fallas K M. 2015. 1.8 Billion Years of Detrital Zircon Recycling Calibrates a Refractory Part of Earth’s Sedimentary Cycle[J]. PLOS ONE, 10: e0144727.
Google Scholar
|
[64] |
Han P Y, Guo J L, Chen K, Huang H, Zong K Q, Liu Y S, Hu Z C, Gao S. 2017. Widespread Neoarchean (~2.7-2.6Ga)magmatism of the Yangtze craton, South Chi na, as revealed by modern river detrital zircons[J]. Gondwana Research, 42: 1-12.
Google Scholar
|
[65] |
Han Q S, Peng S B, Polat A, Kusky T, Deng H, Wu T Y. 2018. A ca.2.1 Ga Andean type margin built on metasomatized lithosphere in the northern Yangtze craton,China: evidence from high-Mg basalts and andesites[J]. Precambrian Research, 309: 309-324.
Google Scholar
|
[66] |
Han Q S, Peng S B, Polat A, Kusky T. 2019. Petrogenesis and geochronology of Paleoproterozoic magmatic rocks in the Kongling complex: Evidence for a collisional orogenic event in the Yangtze craton[J]. Lithos, 342-343: 513-529.
Google Scholar
|
[67] |
Hawkesworth C J, Dhuime B, Pietranik A B, Cawood P A, Kemp A I S, Storey C D. 2010. The generation and evolution of the continental crust[J]. Journal of Geographical Sciences, 167: 229-248.
Google Scholar
|
[68] |
Hawkesworth C, Cawood P, Kemp T, Storey C, Dhuime B. 2009. A Matter of Preservation[J]. Science, 323: 49-50. He M Y, Zheng H B, Bookhagen B, Clift P D. 2014. Controls on erosion intensity in the Yangtze River basin tracked by U-Pb detrital zircon dating[J]. Earth-Science Reviews, 136: 121-140.
Google Scholar
|
[69] |
He M Y, Zheng H B, Clift P D. 2013. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology, 360-361: 186-203.
Google Scholar
|
[70] |
Holland H D, Gottfried D. 1955. The effect of nuclear radiation on the structure of zircon[J]. Acta Crystallographica, 8: 291-300.
Google Scholar
|
[71] |
Horne A M, van Soest M C, Hodges K V, Tripathy-Lang A, Hourigan J K. 2016. Integrated single crystal laser ablation U/Pb and (U-Th)/He dating of detrital accessory minerals - Proof-of-concept studies of titanites and zircons from the Fish Canyon tuff[J]. Geochimica et Cosmochimica Acta, 178: 106-123.
Google Scholar
|
[72] |
Hoskin PW O, Ireland T R. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator[J]. Geology 28: 627-630.
Google Scholar
|
[73] |
Hu J, Liu X C, Chen L Y, Qu W, Li H K, Geng J Z. 2013. A ~2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 58: 3564-3579.
Google Scholar
|
[74] |
Hui B, Dong Y P, Cheng C, Long X P, Liu X, Yang Z, Sun S S, Zhan F F, Varga J. 2017. Zircon U-Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean-Paleoproterozoic Yudongzi complex, northwestern margin of the Yangtze craton, China[J]. Precambrian Research, 301: 65-85.
Google Scholar
|
[75] |
Iizuka T, Komiya T, Rino S, Maruyama S, Hirata T. 2010. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth[J]. Geochimica et Cosmochimica Acta, 74: 2450-2472.
Google Scholar
|
[76] |
Iizuka T, Campbell I H, Allen C M, Gill J B, Maruyama S, Makoka F, 2013. Evolution of the African continental crust as recorded by U-Pb, Lu-Hf and O isotopes in detrital zircons from modern rivers. Geochimica et Cosmochimica Acta, 107: 96-120.
Google Scholar
|
[77] |
Jäger H. 2004. Facies dependence of spore assemblages and new data on sedimentary influence on spore taphonomy[J]. Review of Palaeobotany and Palynology, 130: 121-140.
Google Scholar
|
[78] |
Jiang S H, Nie F J, Fang D, Liu Y. 2009. Geochronology and Geochemical Features of the Main Intrusive Rocks in Weishancheng Area, Tongbai county, Henan[J]. Acta Geologica Sinica, 83: 1011-1029.
Google Scholar
|
[79] |
Jiang W C, Li H, Mathur R , Wu J H. 2019. Genesis of the giant Shizhuyuan W-Sn-Mo-Bi-Pb-Zn polymetallic deposit, South China: Constraints from zircon geochronology and geochemistry in skarns[J]. Ore Geology Reviews, 111: 102980.
Google Scholar
|
[80] |
Jiao W F, Wu Y B, Yang S H, Peng M, Wang J. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition[J]. Science in China Series D: Earth Science, 52: 1393-1399.
Google Scholar
|
[81] |
Kuenen P H. 1959. Experimental abrasion 3. Fluviatile action on sand[J]. American Journal of Science, 257: 172-190.
Google Scholar
|
[82] |
Li H, Zhang C L, Xiang Z Q, Lu S N, Jian Z, Geng J Z, Qu L S, Wang Z X. 2013. Zircon and baddeleyite U-Pb geochronology of the Shennongjia Group in the Yangtze Craton and its tectonic significance[J]. Acta Petrologica Sinica, 29: 673-697.
Google Scholar
|
[83] |
Li W X, Li X H, Li Z X. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance[J]. Precambrian Research, 136: 51-66.
Google Scholar
|
[84] |
Li X H, Li W X, Li Z X, Lo C H, Wang J, Ye M F, Yang Y H. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174: 117-128.
Google Scholar
|
[85] |
Li X H, Li Z X, Ge W, Zhou H, Li W, Liu Y, Wingate M T D. 2003. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? [J] Precambrian Research, 122: 45-83.
Google Scholar
|
[86] |
Li X H, Zhou G Q, Zhao J X, Fanning C M, Compston W. 1994. SHRIMP ion microprobe zircon U-Pb Age and Sm-Nd isotopic characteristics of the NE Jiangxi ophiolite and its tectonic implications[J]. Chinese Journal of Geochemistry, 13: 317-325.
Google Scholar
|
[87] |
Li X H. 1999. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: timing of Neoproterozoic Jinning: Orogeny in SE China and implications for Rodinia Assembly[J]. Precambrian Research, 97: 43-57.
Google Scholar
|
[88] |
Li Z X, Li X, Zhou H, Kinny P D. 2002. Grenvillian continental collision in south China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 30: 163-166.
Google Scholar
|
[89] |
Liang Z W, Gao S, Hawkesworth C J, Wu Y B, Storey C D, Zhou L, Li M, Hu Z C, Liu Y S, Liu X M. 2018. Step-like growth of the continental crust in South China: evidence from detrital zircons in Yangtze River sediments[J]. Lithos, 320-321: 155-171.
Google Scholar
|
[90] |
Liu B, Zhai M G, Zhao L, Cui X H, Zhou L G. 2019. Zircon U-Pb-Hf isotope studies of the early Precambrian metasedimentary rocks in the Kongling terrane of the Yangtze Block, South China[J]. Precambrian Research, 320: 334-349.
Google Scholar
|
[91] |
Liu Q, Yu J H, O’Reilly S Y, Zhou M F, Griffin W L, Wang L, Cui X. 2014. Origin and geological significance of Paleoproterozoic granites in the northeastern Cathaysia Block, South China[J]. Precambrian Research, 248: 72-95.
Google Scholar
|
[92] |
Liu X C, Wu Y B, Fisher C M, Hanchar J M, Beranek L, Gao S, Wang H. 2017. Tracing crustal evolution by U-Th-Pb, Sm-Nd, and Lu-Hf isotopes in detrital monazite and zircon from modern rivers[J]. Geology, 45: 103-106.
Google Scholar
|
[93] |
Mehring J L, McBride E F. 2007. Origin of modern quartzarenite beach sands in a temperate climate, Florida and Alabama, USA[J]. Sedimentary Geology, 201: 432-445.
Google Scholar
|
[94] |
Meng L, Li Z X, Chen H, Li X H, Zhu C. 2015. Detrital zircon U-Pb geochronology, Hf isotopes and geochemistry constraints on crustal growth and Mesozoic tectonics of southeastern China[J]. Journal of Asian Earth Sciences, 105: 286-299.
Google Scholar
|
[95] |
Mezger K, Krogstad E J. 1997. Interpretation of discordant U-Pb zircon ages: An evaluation[J]. Journal of Metamorphic Geology, 15: 127-140.
Google Scholar
|
[96] |
Moecher D P, Kelly E A, Hietpas J, Samson S D. 2019. Proof of recycling in clastic sedimentary systems from textural analysis and geochronology of detrital monazite: Implications for detrital mineral provenance analysis[J]. Geological Society of America Bulletin, 131: 1115-1132.
Google Scholar
|
[97] |
Moecher D P, Samson S D. 2006. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis[J]. Earth and Planetary Scienc Letters, 247: 252-266.
Google Scholar
|
[98] |
Moecher D P, Zotto S C, Samson S D. 2023. The critical role of recycling of post-Grenvillian, Neoproterozoic sediments for Phanerozoic Laurentian clastic systems: evidence from detrital-zircon and -monazite geochronology and textures[J]. Journal of Sedimentary Research, 93: 118-144.
Google Scholar
|
[99] |
Murakami T, Chakoumakos B, Ewing R, Lumpkin G, Weber W. 1991. Alpha-Decay Event Damage in Zircon[J]. American Mineralogist, 76:9-10.
Google Scholar
|
[100] |
Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober, B. 2001. Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage[J]. Contributions to Mineralogy and Petrology, 141: 125-144.
Google Scholar
|
[101] |
Nie H, Yang J Z, Zhou G Y, Liu C Z, Zheng J P, Zhang W X, Zhao Y J, Wang H, Wu Y B. 2017. Geochemical and Re-Os isotope constraints on the origin and age of the Songshugou peridotite massif in the Qinling orogen, central China[J]. Lithos, 292-293: 307-319.
Google Scholar
|
[102] |
Parman S W. 2015. Time-lapse zirconography: Imaging punctuated continental evolution[J]. Geochemical Perspectives Letters, 43-52.
Google Scholar
|
[103] |
Pell S D, Williams I S, Chivas A R, 1997. The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands[J]. Sedimentary Geology, 109: 233-260.
Google Scholar
|
[104] |
Peng S B, Kusky T M, Jiang X F, Wang L, Wang J P, Deng H. 2012. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: Implications for South China’s amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 21: 577-594.
Google Scholar
|
[105] |
Peters S E, Husson J M. 2017. Sediment cycling on continental and oceanic crust[J]. Geology, 45: 323-326.
Google Scholar
|
[106] |
Peters S E, Walton C R, Husson J M, Quinn D P, Shorttle O, Keller C B, Gaines R R. 2021. Igneous rock area and age in continental crust[J]. Geology, 49: 1235-1239.
Google Scholar
|
[107] |
Pietranik A B, Hawkesworth C J, Storey C D, Kemp A I S, Sircombe K N, Whitehouse M J, Bleeker W. 2008. Episodic, mafic crust formation from 4.5 to 2.8 Ga: New evidence from detrital zircons, Slave craton, Canada[J]. Geological, 36: 875-878.
Google Scholar
|
[108] |
Puetz S J. 2018. A relational database of global U-Pb ages[J]. Geoscience Frontiers, 9: 877-891.
Google Scholar
|
[109] |
Pullen A, Ibáñez-Mejía M, Gehrels G E, Ibáñez-Mejía J C, Pecha M. 2014. What happens when n= 1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations[J]. Journal of Analytical Atomic Spectrometry, 29(6): 971-980.
Google Scholar
|
[110] |
Pullen A, Kapp P, Gehrels G E, Ding L, Zhang Q. 2011. Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 123: 585-600.
Google Scholar
|
[111] |
Rasmussen B, Fletcher I R, Muhling J R. 2007. In situ U-Pb dating and element mapping of three generations of monazite: Unravelling cryptic tectonothermal events in low-grade terranes[J]. Geochimica et Cosmochimica Acta, 71: 670-690.
Google Scholar
|
[112] |
Reiners P W, Campbell I H, Nicolescu S, Allen C M, Hourigan J K, Garver J I, Mattinson J M, Cowan D S. 2005. (U-Th)/(He-Pb) double dating of detrital zircons[J]. American Journal of Science, 305: 259-311.
Google Scholar
|
[113] |
Roberts N MW, Spencer C J. 2015. The zircon archive of continent formation through time[A].//Roberts N M W, Van Kranendonk M, Parman S, Shirey S, Clift P D. 2015. Continent Formation Through Time. Geological Society, London, Special Publications, 389: 197-225.
Google Scholar
|
[114] |
Roser B P, Korsch R J. 1999. Geochemical characterization, evolution and source of a Mesozoic accretionary wedge: the Torlesse terrane, New Zealand[J]. Geological Magazine, 136: 493-512.
Google Scholar
|
[115] |
Samson S D, Moecher D P, Satkoski A M. 2018. Inherited, enriched, heated, or recycled? Examining potential causes of Earth’s most zircon fertile magmatic episode[J]. Lithos, 314-315: 350-359.
Google Scholar
|
[116] |
Shaanan U, Rosenbaum G. 2018. Detrital zircons as palaeodrainage indicators: insights into southeastern Gondwana from Permian basins in eastern Australia[J]. Basin Research, 30: 36-47.
Google Scholar
|
[117] |
Sharman G R, Malkowski M A. 2020. Needles in a haystack: Detrital zircon U-Pb ages and the maximum depositional age of modern global sediment[J]. Earth-Science Reviews, 203: 103109.
Google Scholar
|
[118] |
Shu L S, Deng P, Yu J H, Wang Y B, Jiang S Y. 2008a. The age and tectonic environment of the rhyolitic rocks on the western side of Wuyi Mountain, South China[J]. Science in China Series D: Earth Science, 51: 1053-1063.
Google Scholar
|
[119] |
Shu L S, Faure M, Jiang S Y, Yang Q, Wang Y. 2006. SHRIMP zircon U-Pb age, litho- and biostratigraphic analyses of the Huaiyu Domain in South China[J]. Episodes, 29: 244-252.
Google Scholar
|
[120] |
Shu L S, Faure M, Wang B, Zhou X M, Song B. 2008b. Late Palaeozoic-Early Mesozoic geological features of South China: Response to the Indosinian collision events in Southeast Asia[J]. Comptes Rendus Géoscience, 340: 151-165.
Google Scholar
|
[121] |
Shu L S, Faure M, Yu J H, Jahn B M. 2011. Geochronological and geochemical features of the Cathaysia block(South China): New evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Research, 187: 263-276.
Google Scholar
|
[122] |
Shu L S, Charvet J. 1996. Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone: with HP metamorphism and ophiolitic mélange (Jiangnan Region, South China)[J]. Tectonophysics, 267: 291-302.
Google Scholar
|
[123] |
Shukri. 1949. The mineralogy of some nile sediments[J]. Quarterly Journal of the Geological Society, 105: 511-534.
Google Scholar
|
[124] |
Song F, Niu Z J, He Y Y, Algeo T J, Yang W Q. 2020. Geographic proximity of Yangtze and Cathaysia blocks during the late Neoproterozoic demonstrated by detrital zircon evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 558: 109939.
Google Scholar
|
[125] |
Spencer C J, Kirkland C L, Roberts N M W. 2018. Implications of erosion and bedrock composition on zircon fertil ity: Examples from South America and Western Australia[J]. Terra Nova, 30: 289-295.
Google Scholar
|
[126] |
Steiger R H, Jäger E. 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology[J]. Earth and Planetary Science Letters, 36: 359-362.
Google Scholar
|
[127] |
Stevens T, Carter A, Watson T P, Vermeesch P, Andò S, Bird A F, Lu H, Garzanti E, Cottam M A, Sevastjanova I. 2013. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 78: 355-368.
Google Scholar
|
[128] |
Voice P J, Kowalewsk, M, Eriksson K A. 2011. Quantifying the Timing and Rate of Crustal Evolution: Global Compilation of Radiometrically Dated Detrital Zircon Grains[J]. The Journal of Geology, 119: 109-126.
Google Scholar
|
[129] |
Wang B Q, Wang W, Chen W T, Gao J F, Zhao X F, Yan D P, Zhou M F. 2013. Constraints of detrital zircon U-Pb ages and Hf isotopes on the provenance of the Triassic Yidun Group and tectonic evolution of the Yidun Terrane, Eastern Tibet[J]. Sedimentary Geology, 289: 74-98.
Google Scholar
|
[130] |
Wang D Z, Zhou X M, Xu X S. 1989. Types and genetic model of Precambrian granitoids of South China[J]. Journal of Southeast Asian Earth Sciences, 3: 255-261.
Google Scholar
|
[131] |
Wang K, Dong S W, Li Z X, Han B F. 2018a. Age and chemical composition of Archean metapelites in the Zhongxiang Complex and implications for early crustal evolution of the Yangtze Craton[J]. Lithos, 320-321: 280-301.
Google Scholar
|
[132] |
Wang K, Dong S W. 2019. New insights into Paleoproterozoic tectonics of the Yangtze Block in the context of early Nuna assembly: Possible collisional granitic magmatism in the Zhongxiang Complex, South China[J]. Precambrian Research, 334: 105452.
Google Scholar
|
[133] |
Wang K, Li Z X, Dong S W, Cui J J, Han B F, Zheng T, Xu Y L. 2018b. Early crustal evolution of the Yangtze Craton, South China: New constraints from zircon U-Pb-Hf isotopes and geochemistry of ca. 2.9-2.6 Ga granitic rocks in the Zhongxiang Complex[J]. Precambrian Research, 314: 325-352.
Google Scholar
|
[134] |
Wang L J, Griffin W L, Yu J H, O’Reilly S Y. 2013. U-Pb and Lu-Hf isotopes in detrital zircon from Neoproterozoic sedimentary rocks in the northern Yangtze Block: Implications for Precambrian crustal evolution[J]. Gondwana Research, 23: 1261-1272.
Google Scholar
|
[135] |
Wang T, Wang X X, Tian W, Zhang C L, Li W P, Li S. 2009. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China[J]. Science in China Series D: Earth Sciences, 52: 1359-1384.
Google Scholar
|
[136] |
Wang W, Cawood P A, Zhou M F, Zhao J H. 2016. Paleoproterozoic magmatic and metamorphic events link Yangtze to northwest Laurentia in the Nuna supercontinent[J]. Earth and Planetary Science Letters 433: 269-279.
Google Scholar
|
[137] |
Wang W, Wang F, Chen F K, Zhu X Y, Xiao P, Siebel W. 2010. Detrital Zircon Ages and Hf-Nd Isotopic Composition of Neoproterozoic Sedimentary Rocks in the Yangtze Block: Constraints on the Deposition Age and Provenance[J]. The Journal of Geology, 118: 79-94.
Google Scholar
|
[138] |
Wang W, Zhou M F, Zhao X F, Chen W T, Yan D P. 2014. Late Paleoproterozoic to Mesoproterozoic rift successions in SW China: Implication for the Yangtze Block-North Australia-Northwest Laurentia connection in the Columbia supercontinent[J]. Sedimentary Geology, 309: 33-47.
Google Scholar
|
[139] |
Wang W, Zhou M F. 2014. Provenance and tectonic setting of the Paleo- to Mesoproterozoic Dongchuan Group in the southwestern Yangtze Block, South China: Implication for the breakup of the supercontinent Columbia[J]. Tectonophysics, 610: 110-127.
Google Scholar
|
[140] |
Wang X L, Zhou J C, Qiu J S, Zhang W L, Liu X M, Zhang G L. 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution[J]. Precambrian Research, 145: 111-130.
Google Scholar
|
[141] |
Wang Y J, Zhang A M, Cawood P A, Fan W M, Xu J F, Zhang G W, Zhang Y Z. 2013. Geochronological, geochemical and Nd-Hf-Os isotopic fingerprinting of an early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia[J]. Precambrian Research, 231: 343-371.
Google Scholar
|
[142] |
Wang Z J, Wang J, Deng Q, Du Q D, Zhou X L, Yang F, Liu H. 2015. Paleoproterozoic I-type granites and their implications for the Yangtze block position in the Columbia supercontinent: Evidence from the Lengshui Complex, South China[J]. Precambrian Research, 263: 157-173.
Google Scholar
|
[143] |
Wang Z J, Wang J, Du Q D, Deng Q, Yang F, Wu H. 2013. Mature Archean continental crust in the Yangtze craton: Evidence from petrology, geochronology and geochemistry[J]. Chinese Science Bulletin, 58: 2360-2369.
Google Scholar
|
[144] |
Wei Y X, Zhou W X, Hu Z X, Li H Q, Huang X X, Zhao X M, Xu D X. 2019. Geochronology and Geochemistry of Archean TTG and Tremolite Schist Xenoliths in Yemadong Complex: Evidence for ≥3.0 Ga Archean Continental Crust in Kongling High-Grade Metamorphic Terrane, Yangtze Craton, China[J]. Minerals, 9: 689.
Google Scholar
|
[145] |
Weislogel A L, Graham S A, Chang E Z, Wooden J L, Gehrels G E, Yang H. 2006. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks[J]. Geology, 34: 97-100.
Google Scholar
|
[146] |
Wilde S A, Valley J W, Peck W H, Graham C M. 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago[J]. Nature, 409: 175-178.
Google Scholar
|
[147] |
Wilkinson B H, McElroy B J, Kesler S E, Peters S E, Rothman E D. 2009. Global geologic maps are tectonic speedometers--Rates of rock cycling from area-age frequencies[J]. Geological Society of America Bulletin, 121: 760-779.
Google Scholar
|
[148] |
Wissink G K, Hoke G D. 2016. Eastern margin of Tibet supplies most sediment to the Yangtze River[J]. Lithosphere, 8: 601-614.
Google Scholar
|
[149] |
Wu Y B, Gao S, Zhang H F, Zheng J P, Liu X C, Wang H, Gong H J, Zhou L, Yuan H L. 2012. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 200-203: 26-37.
Google Scholar
|
[150] |
Wu Y B, Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt in central China[J]. Gondwana Research, 23: 1402-1428.
Google Scholar
|
[151] |
Wu Y B, Zhou G Y, Gao S, Liu X C, Qin Z W, Wang H, Yang J Z, Yang S H. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs[J]. Precambrian Research, 254: 73-86.
Google Scholar
|
[152] |
Xiong Q, Zheng J P, Yu C M, Su Y P, Tang H Y, Zhang Z H. 2009. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: signification for the Yangtze continental cratonization in Paleoproterozoic[J]. Chinese Science Bulletin, 54: 436-446.
Google Scholar
|
[153] |
Xu D L, Wei Y X, Peng L H, Deng, X, Hu K, Liu H. 2018. A ca. 2.2Ga Acidic Magmatic Event at the Northern Margin of the Yangtze Craton: Evidence from U-Pb Dating and Hf Isotope Analysis of Zircons from the Kongling Complex[J]. Acta Geologica Sinica - English Edition, 92: 872-873.
Google Scholar
|
[154] |
Xu J, Stockli D F, Snedden J W. 2017. Enhanced provenance interpretation using combined U-Pb and(U-Th)/He double dating of detrital zircon grains from lower Miocene strata, proximal Gulf of Mexico Basin, North America[J]. Earth and Planetary Science Letters, 475: 4
Google Scholar
|