2023 Vol. 39, No. 4
Article Contents

LONG Si-Jia, TANG Yuan-Yuan, DAI Liang-Liang, QIAO Shuang, FAN Wang-Dong, SHE Xiong, KONG Wei-Wei. 2023. Evaluation of Soil and Water Loss in the Rocky Mountain Area of Southwest China Based on Improved RUSLE Model: Taking Longshan County, Hunan Province as an Example. South China Geology, 39(4): 704-712. doi: 10.3969/j.issn.2097-0013.2023.04.011
Citation: LONG Si-Jia, TANG Yuan-Yuan, DAI Liang-Liang, QIAO Shuang, FAN Wang-Dong, SHE Xiong, KONG Wei-Wei. 2023. Evaluation of Soil and Water Loss in the Rocky Mountain Area of Southwest China Based on Improved RUSLE Model: Taking Longshan County, Hunan Province as an Example. South China Geology, 39(4): 704-712. doi: 10.3969/j.issn.2097-0013.2023.04.011

Evaluation of Soil and Water Loss in the Rocky Mountain Area of Southwest China Based on Improved RUSLE Model: Taking Longshan County, Hunan Province as an Example

More Information
  • Corresponding author: TANG Yuan-Yuan  
  • The RUSLE model, the vegetation management factor C of which is improved based on Landsat remote sensing images and the Normalized Mountain Vegetation Index (NDMVI), is used to estimate soil erosion from 2000 to 2020 in Longshan County, Hunan Province. The aim is to quickly and scientifically evaluate the changes in soil erosion in the study area, and provide a scientific basis for soil erosion control in southwestern rocky mountainous areas represented by Longshan County. The NDMVI value range in 2000 increased by 0.3158 compared to the Normalized Vegetation Index (NDVI), and the NDMVI value range in 2020 increased by 0.2076 compared to NDVI, with significant increases. This indicates that it is easier to use NDMVI to distinguish features and eliminate complex terrain impacts. Through image comparison, it can be seen that it is better to use NDMVI to distinguish land features than NDVI, and the accuracy of extracting urban land, water bodies, and other land features is higher, especially in areas with undulating terrain and shaded slopes, which can better invert vegetation cover management factors. The vegetation cover management factor C within mountain vegetation index correction can be used to more accurately distinguish land features, especially in areas with undulating terrain and shaded slopes. This method can be effectively applied to the monitoring and evaluation of soil and water loss in southwestern mountainous areas, achieving rapid and quantitative monitoring of dynamic changes.
  • 加载中
  • [1] 蔡崇法,丁树文,史志华,黄丽,张光远.2000.应用USLE 模型与地理信息系统IDRISI 预测小流域土壤侵蚀量的研究[J].水土保持学报,14(2):19-24.

    Google Scholar

    [2] 陈朝良,赵广举,穆兴民,田鹏,刘利昆.2021.基于RUSLE模型的湟水流域土壤侵蚀时空变化[J].水土保持学报,35(4):73-79.

    Google Scholar

    [3] 陈红,江旭聪,任磊,唐小倩,肖新.2021.基于RUSLE模型的淮河流域土壤侵蚀定量评价[J].土壤通报,52(1):165-176.

    Google Scholar

    [4] 陈学兄.2013.基于遥感与GIS 的中国水土流失定量评价[D].西北农林科技大学博士学位论文,25-42.

    Google Scholar

    [5] 陈学兄,常庆瑞,毕如田,刘正春,徐立帅,张小军.2020.基于山地植被指数估算临县植被覆盖度[J].应用基础与工程科学学报,28(2):310-320.

    Google Scholar

    [6] 陈正发,龚爱民,宁东卫,张刘东,王建雄,相彪. 2021. 基于RUSLE 模型的云南省土壤侵蚀和养分流失特征分析[J].水土保持学报,35(6):7-14.

    Google Scholar

    [7] 邓辉,何政伟,陈晔,许辉熙,蔡宏.2013.基于GIS 和RUSLE模型的山地环境水土流失空间特征定量分析——以四川泸定县为例[J].地球与环境,41(6):669-679.

    Google Scholar

    [8] 付兴涛,张丽萍.2015.坡长对红壤侵蚀影响人工降雨模拟研究[J].应用基础与工程科学学报,23(3):474-483.

    Google Scholar

    [9] 高峰,华璀,卢远,陶艳成.2014.基于GIS 和USLE 的钦江流域土壤侵蚀评估[J].水土保持研究,21(1):18-22+28.

    Google Scholar

    [10] 高凡洁,张富,胡彦婷,柴亚昕,包炳琛,蒋承洋.2022.基于GIS和RUSLE模型的定西市安定区土壤侵蚀时空变化[J].甘肃农业大学学报,57(l):161-168.

    Google Scholar

    [11] 江莉佳.2015.基于RUSLE模型的湘西石漠化地区土壤侵蚀研究——以龙山县为例[D].长沙:中南林业科技大学硕士学位论文,4-26.

    Google Scholar

    [12] 李晓松,吴炳方,王浩,张瑾.2011.区域尺度海河流域水土流失风险评估[J].遥感学报,15(2):372-387.

    Google Scholar

    [13] 梁音,史学正.1999.长江以南东部丘陵山区土壤可蚀性K值研究[J].水土保持研究,6(2):47-52.

    Google Scholar

    [14] 刘亚迪,汪小钦,江洪.2015.基于地形调节植被指数估算长汀县植被覆盖度[J].国土资源遥感,27(1):164-171.

    Google Scholar

    [15] 罗杰,刘绥华,阮欧,胡海涛.2022.运用NDVI-Albedo 特征空间提取石漠化信息[J].测绘通报,(4):56-60+82.

    Google Scholar

    [16] 潘佑堂,杨胜刚.1995.武陵山区水土流失亟待治理[J].湖南水利,(1):42-45.

    Google Scholar

    [17] 彭华.2006.加快龙山生态建设步伐[J].湖南林业,(9):5.

    Google Scholar

    [18] 孙桂凯,王国帅,魏义熊,赵荣娜,莫崇勋,杨云川.2021.基于改进遥感生态指数的岩溶山区生态质量评价[J].水土保持通报,41(2):230-239.

    Google Scholar

    [19] 王丰,刘金铜,付同刚,高会,齐菲.2022.基于RUSLE模型的太行山区土壤侵蚀时空分异特征及影响因子研究[J].

    Google Scholar

    [20] 中国生态农业学报(中英文),7:1064-1076.

    Google Scholar

    [21] 王海涛.2020.湖南省近20 年土壤侵蚀时空变化[D].长沙:湖南农业大学硕士学位论文,8-36.

    Google Scholar

    [22] 吴兆清,苏绍眉.2004.湖南“四水”中上游水土流失现状与治理对策[J].矿冶,13(1):9l-94.

    Google Scholar

    [23] 吴志杰,何国金,黄绍霖,王猛猛,林金堂.2017.南方丘陵区植被覆盖度遥感估算的地形效应评估[J].遥感学报,21(1):159-167.

    Google Scholar

    [24] 吴志杰,何国金,王猛猛,傅娇凤,邹丹.2016.南方丘陵区植被覆盖度遥感估算与时空变化研究:以福建省永定县为例[J].遥感技术与应用,31(6):1201-1208.

    Google Scholar

    [25] 吴志杰,徐涵秋.2011.卫星影像数据构建山地植被指数与应用分析[J].地球信息科学学报,13(5): 656-664.

    Google Scholar

    [26] 杨冉冉,徐涵秋,林娜,何慧,曾宏达.2013.基于RUSLE 的福建省长汀县河田盆地区土壤侵蚀定量研究[J].生态学报,33(10):2974-2982.

    Google Scholar

    [27] 尹黎明,袁志忠,雷永康.2012.湘西土家族苗族自治州的水土流失及防治对策[J].中国水土保持,(1):21-23.

    Google Scholar

    [28] 张灿,徐涵秋,张好,唐菲,林中立.2015.南方红壤典型水土流失区植被覆盖度变化及其生态效应评估—以福建省长汀县为例[J].自然资源学报,30(6):917-928.

    Google Scholar

    [29] 张素,熊东红,吴汉,袁勇,李琬欣,张闻多.2021.基于RUSLE模型的孙水河流域土壤侵蚀空间分异特征[J].水土保持学报,35(5):24-30.

    Google Scholar

    [30] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.2009. GB/T 17296-2009 中国土壤分类与代码[S].

    Google Scholar

    [31] 中华人民共和国水利部.2007. SL190-2007 土壤侵蚀分类分级标准[S].

    Google Scholar

    [32] Jia K, Liang S L, Gu X F, Baret F, Wei X Q, Wang X X, Yao Y J, Yang L Q, Li Y W. 2016. Frational vegetation cover estimation algorithm for Chinese GF-1 wide field view data[J]. Remote Sensing of Environment, 177:184-191.

    Google Scholar

    [33] Wischmeir W H, Smith D D. 1978. Predicting rainfall erosion losses: A guide to conservation planning[M].USA: Agriculture Handbook, 537.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1294) PDF downloads(204) Cited by(0)

Access History

Catalog