[1] |
窦妍.2010.鄂尔多斯盆地北部白垩系地下水水文地球化学演化及循环规律研究[D].长安大学博士学位论文.
Google Scholar
|
[2] |
龚亚兵,龚绪龙,许书刚,唐鑫,苏东,吴夏懿.2022.苏南地区地下水化学特征及演化分析[J]. 地质论评,68(6):2207-2218.
Google Scholar
|
[3] |
顾慰祖,庞忠和,王全九,宋献方.2011.同位素水文学[M].北京:科学出版社.
Google Scholar
|
[4] |
郭政昇,王娟,赵培.2017.珠江流域大气降水稳定性氢氧同位素特征[J].水文,37(2):78-82.
Google Scholar
|
[5] |
刘大刚,吕玉香,郭传道.2018.西南典型断陷盆地岩溶地下水径流特征研究[J].地下水,40(1):15-17.
Google Scholar
|
[6] |
刘梅.2019.清远市区城镇用地扩展情况分析[J].测绘与空间地理信息,42(10):201-203.
Google Scholar
|
[7] |
卢淑清.2012.论后发展地区城市化战略——以广东清远为例[J].科技经济市场,(2):26-28.
Google Scholar
|
[8] |
吕小凡,豆敬峰,席航,夏飞雪,雷崇方.2017.氘氧同位素法在周口市地下水研究中的应用[J].地下水,39(5):28-30.
Google Scholar
|
[9] |
潘欢迎,邹常健,毕俊擘,刘运德,黄丽文.2021.新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J].地质科技通报,40(3):194-203.
Google Scholar
|
[10] |
王雨旸,杨平恒,张洁茹.2022. 重庆市老龙洞地下河流域硝酸盐来源和生物地球化学过程的识别[J].环境科学,43(10):4470-4479.
Google Scholar
|
[11] |
徐一萍,向喜琼,杨根兰.2020.开阳南江大峡谷岩溶地下水补径排研究[J].水利水电技术,51(2):53-59.
Google Scholar
|
[12] |
尹观,倪师军,张其春.2001.氘过量参数及其水文地质学意义——以四川九寨沟和冶勒水文地质研究为例[J].成都理工学院学报,(3):251-254.
Google Scholar
|
[13] |
张保建,徐军祥,马振民,沈照理,亓麟.2010.运用H、O同位素资料分析地下热水的补给来源——以鲁西北阳谷-齐河凸起为例[J].地质通报,29(4):603-609.
Google Scholar
|
[14] |
张秝湲,陈锁忠,都娥娥.2011.基于同位素与水化学分析法的地下水补径排研究——以苏锡常地区浅层地下水为例[J].南京师大学报(自然科学版),34(2):107-112.
Google Scholar
|
[15] |
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 2017. GB/T 14848-2017 地下水质量标准[S].
Google Scholar
|
[16] |
中华人民共和国自然资源部. 2021. DZ/T 0064-2021 地下水质量分析方法[S].
Google Scholar
|
[17] |
朱静静,周宏.2017.水文地质剖面分析在岩溶水系统研究中的应用——以鄂西响水洞岩溶水系统为例[J].安全与环境工程,24(3):1-7+19.
Google Scholar
|
[18] |
Cook G T, Passo C J, Carter B. 2003. Environmental liquid scintillation analysis[A].//L'Annunziata. Handbook of Radioactivity Analysis, 2nd edtion. San Diego: Academic Press, 537-607.
Google Scholar
|
[19] |
Dansgaard W. 1964. Stable isotopes in precipitation[J]. Tellus, 16(4): 436-468.
Google Scholar
|
[20] |
Duan W H, Ruan J Y, Luo W J, Li T Y, Tian L J, Zeng G N, Zhang D Z, Bai, Y J, Li J L, Tao T, Zhang P Z, Baker A, Tan M. 2016. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China[J]. Geochimica et Cosmochimica Acta, 183: 250-266.
Google Scholar
|
[21] |
Feth J H. 1971. Mechanisms controlling world water chemistry: evaporation-crystallization process[J]. Science, 172(3985): 870-872.
Google Scholar
|
[22] |
Gibbs R J. 1970. Mechanisms controlling world water chemistry[J]. Science, 170(3962): 1088-1090.
Google Scholar
|
[23] |
Goode D J. 1996. Direct simulation of groundwater age[J]. Water Resources Research, 32: 289-296.
Google Scholar
|
[24] |
Huang G X, Liu C Y, Sun J C, Zhang M, Jing J H, Li L P. 2018. A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River Delta[J]. Science of the Total Environment, 625:510-518.
Google Scholar
|
[25] |
Ingebritsen S E, Sanford W E, Neuzil C E. 2006. Groundwater in geologic processes, 2nd edition[M]. Cambridge University Press.
Google Scholar
|
[26] |
Jiang Y J, Yuan D X, Zhang G, He R S. 2004. Effects of land use change on groundwater quality in karst watershed-A case study in Xiaojiang watershed of Yunnan Province[J]. Journal of Natural Resources, 19(6): 707-715.
Google Scholar
|
[27] |
Lan J C, He Q F, Hu N, Wang P, Ren K, Chen X B. 2013. Effects of anthropogenic on karst groundwater geohydrochemistry in an urbanized area[A]. International Conference on Energy and Environmental Protection, 2418-2423.
Google Scholar
|
[28] |
Li P Y, Wu J H, Qian H. 2013. Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China[J]. Environmental Earth Sciences, 69(7):2211-2225.
Google Scholar
|
[29] |
Liu C H, Wang W, Zhang G H, Zhu H H, Wang J J, Guo Y. 2022. Hydrochemical and isotope (18O, 2H and 3H) characteristics of karst water in central Shandong Province: A case study of the Pingyi-Feixian Region[J]. Minerals, 12(2), 154.
Google Scholar
|
[30] |
Lu L, Chen Y D, Zou S Z, Fan L J, Lin Y S, Wang Z. 2022. Hydrochemical characteristics and water quality evaluation of karst groundwater in typical industrial cities[J]. Carsologica Sinica, 41(4): 588-598.
Google Scholar
|
[31] |
Pu J B, Yuan D X, Xiao Q, Zhao H P. 2015. Hydrogeochemical characteristics in karst subterranean streams: A case history from Chongqing, China[J]. Carbonates and Evaporites, 30(3): 307-319.
Google Scholar
|
[32] |
Schoeller H. 1967. Qualitative evaluation of groundwater resources[A].//Schoeller H. Methods and techniques of groundwater investigation and development, Water resource series No. 33, UNESCO, Paris, 44-52.
Google Scholar
|
[33] |
Tóth J. 1963. A Theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research, 68: 4795-4812.
Google Scholar
|
[34] |
Tóth J. 1999. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations[J]. Hydrogeology Journal, 7: 1-14.
Google Scholar
|
[35] |
Tóth J. 2009a. Gravitational systems of groundwater flow: theory, evaluation, utilization[M]. Cambridge: Cambridge University Press.
Google Scholar
|
[36] |
Tóth J. 2009b. Gravity flow of groundwater: a geologic agent[A].//Tóth J. Gravitational systems of groundwater flow: theory, evaluation, utilization. Cambridge: Cambridge University Press, 91-127.
Google Scholar
|
[37] |
Wu C, Wu X, Mu W P, Zhu G. 2020. Using isotopes (H, O, and Sr) and major ions to identify hydrogeochemical characteristics of groundwater in the Hongjiannao Lake Basin, Northwest China[J].Water, 12(5): 1467.
Google Scholar
|
[38] |
Zhang F G, Huang G X, Hou Q X, Liu C Y, Zhang Y, Zhang Q. 2019. Groundwater quality in the Pearl River Delta after the rapid expansion of industrialization and urbanization: Distributions, main impact indicators, and driving forces[J]. Journal of Hydrology, 577: 124004.
Google Scholar
|