[1] |
陈洪德,刘磊,林良彪,王兴龙,王志伟,余瑜,曾剑,李朋威.2021.川西坳陷西部龙门山隆升时期上三叠统须家河组沉积响应[J].石油与天然气地质,42(4):801-815.
Google Scholar
|
[2] |
陈竹新,贾东,张惬,魏国齐,李本亮,魏东涛,沈扬.2005.龙门山前陆褶皱冲断带的平衡剖面分析[J].地质学报,79(1):38-45.
Google Scholar
|
[3] |
戴宗明.2012.青藏高原东部四姑娘山地区晚新生代隆升[D].成都理工大学博士学位论文,1-146.
Google Scholar
|
[4] |
樊春,王二七,王刚,王世锋.2008.龙门山断裂带北段晚新近纪以来的右行走滑运动及其构造变换研究[J].地质科学,43(3):417-433.
Google Scholar
|
[5] |
郭斌.2006.龙门山造山带构造特征及演化过程研究[D].中国地质大学(北京)硕士学位论文,1-98.
Google Scholar
|
[6] |
郭旭升.2010.川西地区中、晚三叠世岩相古地理演化及勘探意义[J].石油与天然气地质,31(5):610-620.
Google Scholar
|
[7] |
侯明才,李智武,陈洪德.2012.中—新生代龙门山的差异隆升[J].吉林大学学报(地球科学版),42(1): 104-111.
Google Scholar
|
[8] |
贾秋鹏,贾东,朱艾斓,陈竹新,胡潜伟,罗良,张元元,李一泉.2007.青藏高原东缘龙门山冲断带与四川盆地的现今构造表现:数字地形和地震活动证据[J].地质科学,42(1):31-44.
Google Scholar
|
[9] |
金文正,汤良杰,杨克明,万桂梅,吕志洲,余一欣.2007.川西龙门山褶皱冲断带分带性变形特征[J].地质学报,81(8):1072-1080.
Google Scholar
|
[10] |
李勇,孙爱珍.2000.龙门山造山带构造地层学研究[J].地层学杂志,24(3):201-206.
Google Scholar
|
[11] |
李勇,周荣军,Densmore A L, Ellis MA. 2006a.青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志[J].第四纪研究,26(1):40-51.
Google Scholar
|
[12] |
李勇,周荣军,Densmore A L, Ellis M A,黎兵.2006b.青藏高原东缘龙门山晚新生代走滑挤压作用的沉积响应[J]沉积学报,24(2):153-164.
Google Scholar
|
[13] |
李勇,周荣军,Densmore A L, Ellis MA.2006c.龙门山断裂带走滑方向的反转及其沉积与地貌标志[J].矿物岩石,26(4):26-34.
Google Scholar
|
[14] |
李智武,宋天慧,王自剑,童馗,武文慧,冉波,李金玺,邓宾,刘树根.2021.川西-龙门山盆山系统走向差异演化的变形、隆升和沉积记录及关键构造变革期讨论[J].成都理工大学学报(自然科学版),48(3):257-282.
Google Scholar
|
[15] |
李智武,陈洪德,刘树根,侯明才,邓宾.2010.龙门山冲断隆升及其走向差异的裂变径迹证据[J]. 地质科学,45(4):944-968.
Google Scholar
|
[16] |
林良彪,陈洪德,姜平,胡晓强,纪相田,叶黎明.2006.川西前陆盆地须家河组沉积相及岩相古地理演化[J].成都理工大学学报(自然科学版),33(4):376-383.
Google Scholar
|
[17] |
刘树根,杨荣军,吴熙纯,孙玮,陈杨.2009.四川盆地西部晚三叠世海相碳酸盐岩—碎屑岩的转换过程[J].石油与天然气地质,30(5):556-565.
Google Scholar
|
[18] |
罗梦,朱文斌,郑碧海,朱晓青. 2012.库车盆地中新生代构造演化:磷灰石裂变径迹证据[J].地球科学,37(5):893-902.
Google Scholar
|
[19] |
师皓宇,黄辅琼,马念杰,王永建,马骥,邹光华,彭瑞.2020.基于岩体塑性位错理论的龙门山区域构造系统演化过程[J].地质学报,94(12):3581-3589.
Google Scholar
|
[20] |
谭锡斌. 2012.龙门山推覆构造带新生代热演化历史研究及其对青藏高原东缘隆升机制的约束[D].中国地震局地质研究所博士学位论文,1-129.
Google Scholar
|
[21] |
陶亚玲,张会平,葛玉魁,庞建章,俞星星,张佳伟,赵旭东,马字发.2020.青藏高原东缘新生代隆升剥露与断裂活动的低温热年代学约束[J].地球物理学报,63(11):4154-4167.
Google Scholar
|
[22] |
王二七,孟庆任,陈智樑,陈良忠.2001.龙门山断裂带印支期左旋走滑运动及其大地构造成因[J].地学前缘,8(2):375-384.
Google Scholar
|
[23] |
王二七, 孟庆任. 2008. 对龙门山中生代和新生代构造演化的讨论[J]. 中国科学(D辑),38(10):1221-1333.
Google Scholar
|
[24] |
谢小平,李姝臻,鲁宁,王永栋,席书娜.2021.川北广元须家河组一段沉积相与沉积环境演化分析[J].沉积学报,39(2):493-505.
Google Scholar
|
[25] |
许志琴,赵中宝,彭淼,马绪宣,李化启,赵俊猛. 2016.论“造山的高原”[J].岩石学报,32(12):3557-3571.
Google Scholar
|
[26] |
杨莉,袁万明,朱传宝,洪树炯,李世昱,冯子睿,张爱奎.2021.东昆仑中生代隆升剥露历史[J]. 岩石学报,37(12):3781-3796.
Google Scholar
|
[27] |
袁万明.2016.矿床保存变化研究的热年代学技术方法[J].岩石学报,32(8):2571-2578.
Google Scholar
|
[28] |
Brandon M T. 1996. Probability density plot for fission-track grain-age samples[J]. Radiation Measurements, 26: 663-676.
Google Scholar
|
[29] |
Hurford A J, Gleadow A J W. 1977. Calibration of fission track dating parameters[J]. Nuclear Track Detection, 1: 41-48.
Google Scholar
|
[30] |
Jia D, Li Y Q,Yan B,Li Z,Zhang Y. 2020. The Cenozoic thrusting sequence of the Longmen Shan fold-and-thrust belt, eastern margin of the Tibetan plateau: Insights from low-temperature thermochronology[J]. Journal of Asian Earth Sciences, 198(15):104381.
Google Scholar
|
[31] |
Li H A, Dai J G, Xu S Y, Liu B R, Han X, Wang Y N, Wang C S. 2019. The formation and expansion of the eastern Proto-Tibetan Plateau: Insights from low-temperature thermochronology[J]. Journal of Asian Earth Sciences, 183: 103975.
Google Scholar
|
[32] |
Li M, Tang L J, Yuan W M. 2015. Middle Miocene-Pliocene activities of the North Altyn fault system: evidence from apatite fission track data[J]. Arabian Journal of Geosciences, 8: 9043-9054.
Google Scholar
|
[33] |
Li Z W, Liu S G, Chen H D, Deng B, Hou M C, Wu W H, Cao J X. 2012. Spatial variation in Meso-Cenozoic exhumation history of the Longmen Shan thrust belt (eastern Tibetan Plateau) and the adjacent western Sichuan Basin: Constraints from fission track thermochronology[J]. Journal of Asian Earth Sciences, 47:185-203.
Google Scholar
|
[34] |
Lin A M, Rao G, Yan B. 2014. Structural analysis of the right-lateral strike-slip Qingchuan fault, northeastern segment of the Longmen Shan thrust belt, central China[J]. Journal of Structural Geology, 68: 227-244.
Google Scholar
|
[35] |
Liu S G, Deng B, Li Z W, Luba J, Liu S Wang G Z, Sun W. 2013. Geological Evolution of the Longmenshan Intracontinental Composite Orogen and the Eastern Margin of the Tibetan Plateau[J]. Journal of Earth Science,24(6): 874-890.
Google Scholar
|
[36] |
Meng Q R, Wang E C, Hu J M. 2005. Mesozoic sedimentary evolution of the northwest Sichuan basin: Implication for continued clockwise rotation of the South China block[J]. GSA Bulletin,117:396-410.
Google Scholar
|
[37] |
Tian Y T, Li R, Tang Y, Xu X, Wang Y J, Zhang P Z. 2018. Thermochronological constraints on the late Cenozoic morphotectonic evolution of the Min Shan, the eastern margin of the Tibetan Plateau[J]. Tectonics, 37: 1733-1749.
Google Scholar
|
[38] |
Tian Y T, Liu Y M, Li R, Sun X L, Zhang Z J, Carter A, Vermeesch P. 2022. Thermochronological constraints on Eocene deformation regime in the Long-Men Shan: Implications for the eastward growth of the Tibetan Plateau[J]. Global and Planetary Change, 217, 103930.
Google Scholar
|
[39] |
Vermeesch P. 2009. Radial Plotter: a Java application for fission track, luminescence and other radial plots[J]. Radiation Measurements,44(4):409-410.
Google Scholar
|
[40] |
Wagner G A, Haute P V D. 1992. Fission-Track Dating[M]. Dordrecht: Kluwer Academic Publisher, 1-285.
Google Scholar
|
[41] |
Wang E C. 2017. Timing of the initial collision between the Indian and Asian continents[J]. Science China: Earth Sciences, 60:626-634.
Google Scholar
|
[42] |
Yuan W M, Yang Z Q, Zhang Z C, Deng J. 2011. The uplifting and denudation of main Huangshan Mountains, Anhui Province, China[J]. Science in China: Earth Sciences, 54(8):1168-1176.
Google Scholar
|
[43] |
Zeitler P K, Tahirkheli R A K, Naeser C W, Johnson N M. 1982. Unroofing history of a suture zone in the Himalaya of Pakistan by means of fission-track annealing ages[J]. Earth and Planetary Science Letters, 57:227-240.
Google Scholar
|