2022 Vol. 38, No. 3
Article Contents

CHENHao, LIAn-Bang, ZHAOPeng, XIAXi-Sheng, LIRun-Ze, ZHUMing-Ming, XUHai-Jun. 2022. Crystal Chemistry and Fluid Inclusions of Beryl From the Mufushan Area. South China Geology, 38(3): 459-471. doi: 10.3969/j.issn.2097-0013.2022.03.008
Citation: CHENHao, LIAn-Bang, ZHAOPeng, XIAXi-Sheng, LIRun-Ze, ZHUMing-Ming, XUHai-Jun. 2022. Crystal Chemistry and Fluid Inclusions of Beryl From the Mufushan Area. South China Geology, 38(3): 459-471. doi: 10.3969/j.issn.2097-0013.2022.03.008

Crystal Chemistry and Fluid Inclusions of Beryl From the Mufushan Area

More Information
  • Corresponding author: XUHai-Jun
  • Granitic pegmatite veins are widely distributed in the inner and adjacent region of the Mufushan granitic complex, where beryl is locally concentrated. In this study, centimeter-sized gem beryl crystals were collected from plagioclase-quartz pegmatites from the Duanfengshan, Xiamaiwo and Da’ao areas. The calculated chemical formula based on EPMA data is (Be2.952, Li0.048)Al2.000[Si5.983O18]·0.035H2O, which indicates enriched alkali metals of Be and Li with very low content of Mg, Fe and Mn elements. Abundant oriented fluid inclusions are founded in the studied beryl samples, including gas, liquid and solid phases. Most of these inclusions occur as single phases, while a handful of double-phase or triple-phase inclusions have also been found. Laser Raman investigations indicate that most of these inclusions are liquid and gas fluids, including CO2, N2 and H2O. The results suggest that the beryllium mineralization in pegmatites of the Mufushan area is probably related to the late-stage hydrothermal activity of the granitic complex. Abundant fluid inclusions found in the beryl crystals indicate that fluid activity could promote the chemical differentiation, migration, enrichment and precipitation of rare metal elements, therefore resulting in the local enrichment of mega-crystal beryl.
  • 加载中
  • [1] 代鸿章,王登红,刘丽君,黄 凡,王成辉. 2018.电子探针和微区X射线衍射研究陕西镇安钨-铍多金属矿床中祖母绿级绿柱石 [J].岩矿测试,37(3):336-345.

    Google Scholar

    [2] 郭鸿舒,余晓艳. 2019.巴基斯坦祖母绿的红外光谱和包裹体特征研究[J].岩石矿物学杂志,38(5):724-732.

    Google Scholar

    [3] 李建康,邹天人,王登红,丁 欣.2017.中国铍矿成矿规律 [J].矿床地质,36(4): 951-978.

    Google Scholar

    [4] 李乐广,王连训,田 洋,马昌前,周芳春.2019.华南幕阜山花岗伟晶岩的矿物化学特征及指示意义[J].地球科学,44(7):2532-2560.

    Google Scholar

    [5] 李 鹏,李建康,裴荣富,冷双梁,张 旭,周芳春,李胜苗.2017.幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰:年代学依据 [J].地球科学,42(10):1684-1696.

    Google Scholar

    [6] 李 文,李兆麟,毛艳华. 1999.不同成因伟晶岩绿柱石、海蓝宝石矿物学及物理化学特征研究[J].矿物岩石地球化学通报,18(4):423-428.

    Google Scholar

    [7] 李兆麟,杨荣勇,李 文,翟 伟,毛艳华.1998.中国不同成因伟晶岩形成的物理化学条件[J].地质科技情报,17(S1):29-34.

    Google Scholar

    [8] 刘 翔,周芳春,黄志飚,李建康,周厚祥,肖国强,包云河,李 鹏,谭黎明,石威科,苏俊男,黄小强,陈 虎,汪宣民,林 跃,刘晓敏.2018.湖南平江县仁里超大型伟晶岩型铌钽多金属矿床的发现及其意义[J].大地构造与成矿学,42(2):235-243.

    Google Scholar

    [9] 裴景成,张汉凯.2000.绿柱石中包裹体研究进展[J].地质科技情报,19(1):31-34.

    Google Scholar

    [10] 阮青锋,张良钜,张昌龙,雷 威,饶 灿,廖宝丽,曾伟来.2008.绿柱石的成因与特征的研究[J].矿产与地质,22(3):265-269.

    Google Scholar

    [11] 陶湘媛,谢 磊,王汝成,章荣清,胡 欢,刘 晨.2020.绿柱石的矿物学特征:以喜马拉雅错那和珠峰地区绿柱石为例[J].南京大学学报(自然科学),56(6):815-829.

    Google Scholar

    [12] 王 晶,金 巍,田 洋,李乐广,柯贤忠,龙文国.2020.湖南岳阳-湖北通城地区1∶5万区域地质调查成果与主要进展[J].华南地质,36(3):213-220.

    Google Scholar

    [13] 张文兰,车旭东,王汝成,谢 磊,李晓峰,张 迪.2020.超轻元素铍的电子探针定量分析最佳条件探索:以绿柱石为例[J].科学通报,65(Z2):3205-3216.

    Google Scholar

    [14] 赵珊茸,边秋娟,王勤燕.2017.结晶学及矿物学(第三版)[M].北京:高等教育出版社,1-479.

    Google Scholar

    [15] 赵同新,陈文迪,殷 婷,龚沿东,孙友宝,黄涛宏.2020.电子探针对含Be矿物绿柱石的定量分析[J]. 矿物学报,40(2): 169-175.

    Google Scholar

    [16] 周芳春,刘 翔,李建康,黄志飚,肖国强,李 鹏,周厚祥,石威科,谭黎明,苏俊男,陈 虎,汪宣民. 2019.湖南仁里超大型稀有金属矿床的成矿特征与成矿模型[J].大地构造与成矿学,43(1):77-91.

    Google Scholar

    [17] 周起凤,秦克章,唐冬梅,王春龙,马留锁. 2019.东秦岭卢氏稀有金属伟晶岩的绿柱石矿物学特征及其指示意义[J].岩石学报, 35(7):1999-2012.

    Google Scholar

    [18] 周天怡,陈衍景,张 辉.2014.新疆阿尔泰伟晶岩中绿柱石拉曼光谱特征研究——以可可托海3号脉与阿祖拜328、528号脉为例[J].岩石矿物学杂志,33(S2): 77-84.

    Google Scholar

    [19] Andersson L O. 2006. The positions of H+, Li+ and Na+ impurities in beryl [J]. Physics and Chemistry of Minerals, 33(6): 403-416.

    Google Scholar

    [20] Brand A A, Groat L A, Linnen R L, Garland M I, Breaks F W, Giuliani G. 2009. Emerald mineralization associated with the Mavis lake pegmatite group, near Dryden, Ontario [J]. The Canadian Mineralogist, 47(2): 315-336.

    Google Scholar

    [21] Cěrný P, Anderson A J, Tomascak P B, Chapman R. 2003. Geochemical and morphological features of beryl from the Bikita granitic pegmatite, Zimbabwe [J]. The Canadian Mineralogist, 41(4): 1003-1011.

    Google Scholar

    [22] Giuliani G, France-Lanord C, Zimmermann J L, Cheilletz A, Arboleda C, Charoy B, Coget P, Fontan F, Giard D. 2010. Fluid Composition, δD of Channel H2O,and δ18O of Lattice Oxygen in Beryls: Genetic Implications for Brazilian, Colombian, and Afghanistani Emerald Deposits [J]. International Geology Review, 39(5): 400-424.

    Google Scholar

    [23] Groat L A, Giuliani G, Marshall D D, Turner D. 2008. Emerald deposits and occurrences: A review [J]. Ore Geology Reviews, 34(1-2): 87-112.

    Google Scholar

    [24] Groat L A, Marshall D D, Giuliani G, Murphy D C, Piercey S J, Jambor J L, Mortensen J K, Ercit T S, Gault R A, Mattey D P, Schwarz D, Maluski H, Wise M A, Wengzynowski W, Eaton D W. 2002. Mineralogical and geochemical study of the Regal Ridge emerald showing, southeastern Yukon [J]. Canadian Mineralogist, 40(5): 1313-1338.

    Google Scholar

    [25] Ji W B, Faure M, Lin W, Chen Y, Chu Y, Xue Z H. 2018. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and its Tectonic Significance: 1. Structural Analysis and Geochronological Constraints [J]. Journal of Geophysical Research: Solid Earth, 123(1): 689-710.

    Google Scholar

    [26] Li P, Li J K, Liu X, Li C, Huang Z B, Zhou F C. 2020. Geochronology and source of the rare-metal pegmatite in the Mufushan area of the Jiangnan orogenic belt: A case study of the giant Renli Nb–Ta deposit in Hunan, China [J]. Ore Geology Reviews, 116: 103237.

    Google Scholar

    [27] Liu Y, Deng J, Shi G H, Sun D. 2012. Geochemical and morphological characteristics of coarse-grained tabular beryl from the Xuebaoding W-Sn-Be deposit, Sichuan Province, western China [J]. International Geology Review, 54(14): 1673-1684.

    Google Scholar

    [28] London D. 2015. Reading Pegmatites: Part 1-What Beryl Says [J]. Rocks & Minerals, 90: 138-153.

    Google Scholar

    [29] Michallik R M, Wagner T, Fusswinkel T, Heinonen J S, Heikkilä P. 2017. Chemical evolution and origin of the Luumäki gem beryl pegmatite: Constraints from mineral trace element chemistry and fractionation modeling [J]. Lithos, 274-275: 147-168.

    Google Scholar

    [30] Michallik R M, Wagner T, Rämö O T, Heikkilä P. 2019. The role of magmatic and hydrothermal processes in the formation of miarolitic gem beryl from the Luumäki pegmatite, SE Finland [J]. European Journal of Mineralogy, 31(3): 507-518.

    Google Scholar

    [31] Wang L X, Ma C Q, Zhang C, Zhang J Y, Marks M A W. 2014. Genesis of leucogranite by prolonged fractional crystallization: A case study of the Mufushan complex, South China [J]. Lithos, 206-207: 147-163.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1422) PDF downloads(146) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint