2022 Vol. 38, No. 3
Article Contents

ZHANGZun-Zun, LINDong-Yong, YUYu-Shuai, LUYou-Yue, FUJian-Ming, LIJian-Feng, QINZheng-Wei, MALi-Yan, NINGYong-Yun, ZHANGJi-Tao. 2022. Implications to the Petrogenesis and Sn Mineralization of the Granite in the Tengshan’ao Sn deposit, the Nanling Metallogenic Belt. South China Geology, 38(3): 441-458. doi: 10.3969/j.issn.2097-0013.2022.03.007
Citation: ZHANGZun-Zun, LINDong-Yong, YUYu-Shuai, LUYou-Yue, FUJian-Ming, LIJian-Feng, QINZheng-Wei, MALi-Yan, NINGYong-Yun, ZHANGJi-Tao. 2022. Implications to the Petrogenesis and Sn Mineralization of the Granite in the Tengshan’ao Sn deposit, the Nanling Metallogenic Belt. South China Geology, 38(3): 441-458. doi: 10.3969/j.issn.2097-0013.2022.03.007

Implications to the Petrogenesis and Sn Mineralization of the Granite in the Tengshan’ao Sn deposit, the Nanling Metallogenic Belt

  • The Tengshan’ao Sn deposit, located in the south of the Dayishan Granitic Complex in the Nanling metallogenic belt, provides large-scale potential. Based on a detailed geological survey, the granites of the mining area have been systematically studied on petrography, geochemistry, zircon U-Pb dating, and Lu-Hf isotope in this paper. The results show that the age of the fine-grained two-mica monzonitic granite is 146.2±1.6 Ma, about 12 Ma away from that of the fine-grained two-mica monzonitic granite (158.2±1.2 Ma) containing phenocryst, indicating that at least two stages of magmatic intrusion have occurred in the mining area. The granites have consistent litho-geochemistry characteristics, which are rich in silicon, aluminum, and potassium, poor in calcium and magnesium with a low ΣREE content(average 91.0×10-6), and an REE pattern showing an obvious tetrad effect and a strong negative Eu anomaly (the δEu average is 0.03). A combination of the characteristics of high FeOT/MgO ratios (average 16.8) and the 10000×Ga/Al values (3.3-4.8) above 2.6, it is presumed to be the highly differentiated and aluminous A-type granite. The characteristics of trace elements and some of the zircon εHf(t) values (-3.88-6.54) are positive, indicating that the diagenetic magma is of mixed origin of crust-mantle materials, and has been formed in an extensional tectonic environment within the plate, which is in favor of the tin polymetallic mineralization.
  • 加载中
  • [1] 陈 骏,陆建军,陈卫锋,王汝成,马东升,朱金初,张文兰,季峻峰.2008.南岭地区钨锡铌钽花岗岩及其成矿作用[J].高校地质学报,14(4):459-473.

    Google Scholar

    [2] 陈 骏,王汝成,朱金初,陆建军,马东升.2014.南岭多时代花岗岩的钨锡成矿作用[J].中国科学:地球科学,44(1):111-121.

    Google Scholar

    [3] 程顺波,付建明,马丽艳,卢友月.2014.南岭地区成钨、成锡花岗岩组合的几个判别标志[J].华南地质与矿产,30(4):352-360.

    Google Scholar

    [4] 董超阁. 2018. 湖南锡田锡钨矿床和邓阜仙钨矿床成岩成矿年代学及动力学研究[D].中国科学院大学(中国科学院广州地球化学研究所)博士学位论文,93-111.

    Google Scholar

    [5] 付建明,陈希清,马丽艳,程顺波.2010.南岭成矿带锡多金属找矿成果及找矿方向[J].矿床地质,29(S1):181-182.

    Google Scholar

    [6] 付建明,程顺波,卢友月,马丽艳.2012.南岭地区钨锡多金属矿成矿规律及找矿方向[J].地球科学进展,27(S1):162-164.

    Google Scholar

    [7] 付建明,马丽艳,程顺波,卢友月.2013.南岭地区锡(钨)矿成矿规律及找矿[J].高校地质学报,19(2):202-212.

    Google Scholar

    [8] 贺文华. 2011.湖南大义山地区锡多金属矿成矿模式初探[J].华南地质与矿产,27(1):14-21.

    Google Scholar

    [9] 侯可军,李延河,邹天人,曲晓明,石玉若,谢桂青.2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,23(10):2595-2604.

    Google Scholar

    [10] 胡 建,邱检生,王德滋,王汝成,张晓琳.2005.中国东南沿海与南岭内陆A型花岗岩的对比及其构造意义[J].高校地质学报,11(3):404-414.

    Google Scholar

    [11] 华仁民,陈培荣,张文兰,陆建军.2005.论华南地区中生代3次大规模成矿作用[J].矿床地质, 24(2):99-107.

    Google Scholar

    [12] 蒋少涌,赵葵东,姜 海,苏慧敏,熊索菲,熊伊曲,徐耀明,章 伟,朱律运.2020.中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展[J].科学通报,65(33):3730-3745.

    Google Scholar

    [13] 孔 华,费利东,钟江临,王 高,刘士杰,周伟平,全铁军.2014.湖南新生矿区花岗岩的锆石U-Pb年龄、Hf同位素特征及地质意义[J].中国有色金属学报,24(1):229-238.

    Google Scholar

    [14] 李 勇,张岳桥,苏金宝,李建华,董树文.2015.湖南大义山、塔山岩体锆石U-Pb年龄及其构造意义[J].地球学报,36(3):303-312.

    Google Scholar

    [15] 李剑锋,卢友月,张遵遵,付建明,秦拯纬.2022.南岭大义山岩体研究与找矿进展[J/OL].地球科学. https://kns.cnki.net/kcms/detail/42.1874.P.20220110.1521.010.html

    Google Scholar

    [16] 刘铁生.2002.大义山矿田岩体型锡矿地质特征及矿床成因[J].中国地质,29(4):411-415.

    Google Scholar

    [17] 路远发,李文霞,2021a.花岗岩类自然矿物岩石化学换算及程序设计[J].华南地质,37(4):445-457.

    Google Scholar

    [18] 路远发,李文霞,2021b.Pb-Sr-Nd-Hf同位素参数计算及程序设计[J].华南地质,37(2):233-245.

    Google Scholar

    [19] 马丽艳,刘树生,付建明,程顺波,卢友月,梅玉萍.2016.湖南塔山、阳明山花岗岩的岩石成因:来自锆石U-Pb年龄、地球化学及Sr-Nd同位素证据[J].地质学报,90(2):284-303.

    Google Scholar

    [20] 毛景文,谢桂青,程彦博,陈毓川.2009.华南地区中生代主要金属矿床模型[J].地质论评,55(3):347-354.

    Google Scholar

    [21] 毛景文,谢桂青,郭春丽,陈毓川.2007.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报, 23(10):2329-2338.

    Google Scholar

    [22] 毛景文,谢桂青,袁顺达,刘 鹏,孟旭阳,周振华,郑 伟.2018.环太平洋成矿带斑岩-矽卡岩型铜矿和与花岗岩有关的锡多金属矿研究现状与展望[J].岩石学报,34(9):2501-2517.

    Google Scholar

    [23] 彭建堂,胡瑞忠,袁顺达,毕献武,沈能平.2008.湘南中生代花岗质岩石成岩成矿的时限[J].地质论评,54(5):617-625.

    Google Scholar

    [24] 秦拯纬,付建明,邢光福,程顺波,卢友月,祝颖雪.2022.南岭成矿带中-晚侏罗世成钨、成锡、成铅锌(铜)花岗岩的差异性研究[J].中国地质,49(2):518-541.

    Google Scholar

    [25] 舒良树,周新民,邓 平,余心起.2006.南岭构造带的基本地质特征[J].地质论评,52(2):251-265.

    Google Scholar

    [26] 隋清霖,祝红丽,孙赛军,陈登辉,赵晓健,王钊飞.2020.锡的地球化学性质与华南晚白垩世锡矿成因[J].岩石学报,36(1):23-34.

    Google Scholar

    [27] 覃明飞,许少伟,李庚华.2019.广西栗木矿田水溪庙锡多金属矿床地质特征[J].现代矿业,35(5):109-112.

    Google Scholar

    [28] 唐朝晖.2019.大义山锡矿田矿床地质特征及矿床成因[J].资源信息与工程,34(4):23-24+26.

    Google Scholar

    [29] 王成辉,王登红,陈 晨,刘善宝,陈振宇,孙 艳,赵晨辉,曹圣华,凡秀君.2019.九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义[J].地质学报,93(6):1359-1373.

    Google Scholar

    [30] 王登红,陈振宇,黄 凡,王成辉,赵 芝,陈郑辉,赵 正,刘新星.2014.南岭岩浆岩成矿专属性及相关问题探讨[J].大地构造与成矿学,38(2):230-238.

    Google Scholar

    [31] 王正军,谢 磊,王汝成,朱金初,车旭东,赵 旭.2018.一种特殊类型的云英岩:湘南香花岭地区癞子岭云英岩成岩成矿特征[J].高校地质学报,24(4):467-480.

    Google Scholar

    [32] 伍光英,潘仲芳,李金冬,肖庆辉,车勤建.2005.湘南大义山花岗岩地质地球化学特征及其与成矿的关系[J].中国地质,32(3):434-442.

    Google Scholar

    [33] 伍光英,彭和求,贾宝华.2000.湘南大义山岩体地质特征及其侵位机制分析[J].华南地质与矿产, (3):1-7.

    Google Scholar

    [34] 夏金龙,黄圭成,定 立,丁丽雪,陈希清,季文兵. 2021.南岭地区诸广山复式岩体年代格架研究[J].华南地质, 37(3):280-297.

    Google Scholar

    [35] 阳杰华,刘 亮,刘 佳,2017.华南中生代大花岗岩省成岩成矿作用研究进展与展望[J].矿物学报,37(6):791-800.

    Google Scholar

    [36] 袁顺达.2017.南岭钨锡成矿作用几个关键科学问题及其对区域找矿勘查的启示[J].矿物岩石地球化学通报,36(5):736-749+696.

    Google Scholar

    [37] 曾志方.2013.湖南大义山锡矿田构造控矿作用与成矿机理研究[D].中国地质大学(武汉)博士学位论文,50.

    Google Scholar

    [38] 张晓军,罗 华,吴志华,范先旺,熊 俊,杨 杰,牟金燚.2014.湖南大义山矿田白沙子岭锡矿床Rb-Sr同位素等时线年龄及其地质意义[J].地球科学(中国地质大学学报),39(10):1422-1432.

    Google Scholar

    [39] 赵增霞,徐兆文,左昌虎,陆建军,王汝成,缪柏虎,路 睿.2017.湖南桂阳大义山南体(太坪山单元)花岗岩形成时代及物质来源探讨[J].地质论评,63(2):395-412.

    Google Scholar

    [40] 赵振华,包志伟,张伯友,熊小林.2000.柿竹园超大型钨多金属矿床形成的壳幔相互作用背景[J].中国科学:地球科学,30(S1):161-168.

    Google Scholar

    [41] 赵振华,包志伟,张伯友.1998.湘南中生代玄武岩类地球化学特征[J].中国科学:地球科学,28(S2):7-14.

    Google Scholar

    [42] 周厚祥,杨贵花,蒋中和,陈强春.2005.大义山锡矿田矿床地质特征及矿床成因[J].华南地质与矿产, (2):87-94.

    Google Scholar

    [43] 朱金初,陈 骏,王汝成,陆建军,谢 磊.2008.南岭中西段燕山早期北东向含锡钨A型花岗岩带[J].高校地质学报,14(4):474-484.

    Google Scholar

    [44] Ballard J R, Palin M J, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce (IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile [J]. Contribution to Mineralogy and Petrology, 144: 347-364.

    Google Scholar

    [45] Ballouard C, Poujol M, Boulvais P, Branquet Y, Tart`ese R, Vigneresse J L. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition [J]. Geology, 44 (3), 231-234.

    Google Scholar

    [46] Chen J, Halls C, Stanley C J. 1992. Tin-bearing skarns of South China: Geological setting and mineralogy [J]. Ore Geology Reviews, 7(3):225-248.

    Google Scholar

    [47] Eugster H P, Wones D R. 1962. Stability relations of the ferruginous biotite, Annite [J]. Journal of Petrology, 3(1):82-125.

    Google Scholar

    [48] Guo J, Lu Y Y, Fu J M, Ning Y Y, Zhang Z Z. 2019. Geology and Geochronology of the Maozaishan Sn Deposit, Hunan Province: Constraints from Zircon U-Pb and Muscovite Ar-Ar Dating [J]. Minerals, 9(12):773-789.

    Google Scholar

    [49] Hu X Y, Bi X W, Hu R Z, Shang L B, Fan W L. 2008. Experimental study on tin partition between granitic silicate melt and coexisting aqueous fluid [J]. Geochemical Journal, 42(2):141-150.

    Google Scholar

    [50] Kemp A I S, Hawkesworth C J, Foster G L, Paterson B A, Woodhead J D, Hergt J M, Gray C M, Whitehouse M J. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon [J]. Science, 315:980-983.

    Google Scholar

    [51] King P L, White A J R, Chappell B W, Allen C M. 1997.Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia [J]. Journal of Petrology, 38(3): 371–391.

    Google Scholar

    [52] Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model [J]. Geology, 35 (2): 179-182.

    Google Scholar

    [53] Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51: 537-571.

    Google Scholar

    [54] Lu Y Y, Cao J Y, Fu J M, Yang X Y, Yang Q Z, Guo J, Cheng S B, Qin Z W, Zhang Z Z, Zhang T Y, Xia J, Zhao Z. 2021.Petrogenesis of the granite related to the Dashunlong Sn polymetallic deposit, Dayishan ore field, South China [J]. Ore Geology Reviews, 139:104478.

    Google Scholar

    [55] Lu Y Y, Li J F, Cao J Y, Fu J M, Cheng S B, Qin Z W, Ma L Y, Feng J P, Zhang Z Z, Chen X Q. 2022. Geochronology and geochemistry of the Late Jurassic Wujiaping Sn deposit, Dayishan ore field, South China: Implications to the petrogenesis and Sn mineralization [J]. Solid Earth Sciences, 7(1):72-86.

    Google Scholar

    [56] Mao J W, Cheng Y B, Chen M H, Franco P. 2013. Major Types and Time-space Distribution of Mesozoic ore Deposits in South China and their Geodynamic Settings [J]. Mineralium Deposita, 48(3):267-294.

    Google Scholar

    [57] Pearce J. 1996. Sources and Settings of Granitic Rocks [J]. Episodes, 19(4):120-125.

    Google Scholar

    [58] Schmidt C. 2018. Formation of hydrothermal tin deposits: raman spectroscopic evidence for an important role of aqueous sn (IV) species [J]. Geochimica et Cosmochimica Acta, 220:499-511.

    Google Scholar

    [59] Sun H R, Zhao Z, Yan G S, Lü Z C, Huang Z L, Yu X F. 2018. Geological and Geochronological Constraints on the Formation of the Jurassic Maozaishan Sn Deposit, Dayishan Orefield, South China [J]. Ore Geology Reviews, 94:212-224.

    Google Scholar

    [60] Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geological Society London Special Publications, 42(1): 313-345.

    Google Scholar

    [61] Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution [J]. The Journal of Geology, 94(4):57-72.

    Google Scholar

    [62] Thomas R, Förster H J, Rickers K, Webster J D. 2005. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study [J]. Contribution to Mineralogy Petrology,148(5): 582-601.

    Google Scholar

    [63] Trail D, Watson E B, Tailby N D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J]. GeochimIca et Cosmochimica Acta, 97:70-87.

    Google Scholar

    [64] Wang D H, Huang F, Wang Y, He H H, Li X M, Liu X X, Sheng J F, Liang T. 2020. Regional Metallogeny of Tungsten-tin-polymetallic Deposits in Nanling Region, South China [J]. Ore Geology Reviews, 120:1-24.

    Google Scholar

    [65] Whalen J B, Currie K L, Chappell B W.1987. A-type granites: geochemical characteristics, discrimination and petrogenesis [J]. Contributions to Mineralogy and Petrology, 95:407-419.

    Google Scholar

    [66] Yu Y S, Zhou Y, Dai P Y, Xie F, Bao B, Liu C P. 2022. Triassic tungsten mineralization in Nanling metallogenic belt: a case study of the Zanshi tungsten deposit in the Yajiangqiao area, eastern Hunan Province, China [J]. Ore Geology Reviews, https://doi.org/10.1016/j.oregeorev.2022.104710.

    Google Scholar

    [67] Zhang Z Z, Ning Y Y, Lu Y Y, Cao J Y, Fu J M, Zhao Z, Guo J, Ma L Y, Qin Z W, Li J F. 2021. Geological characteristics and metallogenic age of Tengshan’ao Sn deposit in Dayishan of South Hunan and its prospecting significance [J]. Solid Earth Sciences, 6: 37-49.

    Google Scholar

    [68] Zhao Z, Yang X Y, Li W Y, Zhang T Y, Lu Y Y, Zhang Z Z. 2022. Petrogenesis of the granite related to the Baishaziling Sn deposit, Dayishan ore field, Southern China [J]. Geochemistry, https://doi.org/10.1016/j.chemer.2022.125873.

    Google Scholar

    [69] Zhou D, Sun Z, Chen H Z, Xu H H, Wang W Y, Pang X, Cai D S, Hu D K. 2008. Mesozoic paleogeography and tectonic evolution of South China Sea and adjacent areas in the context of Tethyan and Paleo-Pacific interconnections [J]. Island Arc, 17(2):186-207.

    Google Scholar

    [70] Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1):26-33.

    Google Scholar

    [71] Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas [J]. Tectonophysics, 326: 269-287.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2198) PDF downloads(194) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint