Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 46, No. 1
Article Contents

YANG Fu. Separation of Copper and Arsenic from Polluted Acid by Multi-stage Scorodite Precipitation[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 132-138. doi: 10.3969/j.issn.1000-6532.2025.01.016
Citation: YANG Fu. Separation of Copper and Arsenic from Polluted Acid by Multi-stage Scorodite Precipitation[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 132-138. doi: 10.3969/j.issn.1000-6532.2025.01.016

Separation of Copper and Arsenic from Polluted Acid by Multi-stage Scorodite Precipitation

  • The production process of sulfuric acid produces a large amount of polluted acid containing high concentration of heavy metal ions such as copper, arsenic, and lead. The traditional sulfidation method or lime method cannot remove arsenic with high selectivity to realize the recovery of valuable metals. In this study, the multi-stage scorodite precipitation method was used to achieve the efficient separation of copper and arsenic in polluted acid. The arsenic precipitation rate from the polluted acid reached 97.1% with a copper loss rate of 9.1% at the conditions of airflow rate of 160 L/min, 1% addition of seed crystals (scorodite crystals), reaction temperature of 70 ℃, five-stage step-by-step precipitation removal of arsenic (24 min reaction time for each stage with an initial pH value of 1.1, 1.9, 2.4, 3.1 and 3.8 respectively for the five-stage). The multi-stage scorodite precipitation method could effectively shorten the reaction time (compared with the one-step scorodite precipitation method) reducing the comprehensive cost significantly which promised a strong application prospect.

  • 加载中
  • [1] 胡盘金, 郑永兴, 宁继来, 等. 含砷硫化铜矿浮选除砷研究进展[J]. 矿产综合利用, 2020(5):45-51.HU P J, ZHENG Y X, NING J L, et al. Research progress of arsenic removal from arsenic bearing copper sulphide ore by flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(5):45-51. doi: 10.3969/j.issn.1000-6532.2020.05.005

    CrossRef Google Scholar

    HU P J, ZHENG Y X, NING J L, et al. Research progress of arsenic removal from arsenic bearing copper sulphide ore by flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(5):45-51. doi: 10.3969/j.issn.1000-6532.2020.05.005

    CrossRef Google Scholar

    [2] 陈京玉, 陈志国, 康卫刚. 新疆某伴生铜钴矿降砷回收工艺研究[J]. 矿产综合利用, 2019(1):51-56.CHEN J Y, CHEN Z G, KANG W G. Study on arsenic reduction and recovery process of an associated copper-cobalt mine in Xinjiang, China[J]. Multipurpose Utilization of Mineral Resources, 2019(1):51-56.

    Google Scholar

    CHEN J Y, CHEN Z G, KANG W G. Study on arsenic reduction and recovery process of an associated copper-cobalt mine in Xinjiang, China[J]. Multipurpose Utilization of Mineral Resources, 2019(1):51-56.

    Google Scholar

    [3] 温凯, 陈建华. 某含银复杂铜铅锌多金属硫化矿浮选实验[J]. 矿产综合利用, 2019(6):28-32.WEN K, CHEN J H. A silver-bearing complex copper-lead-zinc polymetallic sulfide ore flotation experiment[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32.

    Google Scholar

    WEN K, CHEN J H. A silver-bearing complex copper-lead-zinc polymetallic sulfide ore flotation experiment[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32.

    Google Scholar

    [4] 文丰兴, 赵洪贵. 硫铁矿制酸装置净化污酸硫化除砷生产实践[J]. 硫酸工业, 2022(1):35-37.WEN F X, ZHAO H G. Sulfuric iron ore acid plant purification of dirty acid sulfide arsenic removal production practice[J]. Sulphuric Acid Industry, 2022(1):35-37. doi: 10.3969/j.issn.1002-1507.2022.01.012

    CrossRef Google Scholar

    WEN F X, ZHAO H G. Sulfuric iron ore acid plant purification of dirty acid sulfide arsenic removal production practice[J]. Sulphuric Acid Industry, 2022(1):35-37. doi: 10.3969/j.issn.1002-1507.2022.01.012

    CrossRef Google Scholar

    [5] 胥永, 赖兵, 杜龙, 等. 有色金属冶炼厂污酸处理技术比较[J]. 硫酸工业, 2021(11):40-43+53.XU Y, LAI B, DU L, et al. Comparison of acid treatment technologies for non-ferrous metal smelters[J]. Sulphuric Acid Industry, 2021(11):40-43+53.

    Google Scholar

    XU Y, LAI B, DU L, et al. Comparison of acid treatment technologies for non-ferrous metal smelters[J]. Sulphuric Acid Industry, 2021(11):40-43+53.

    Google Scholar

    [6] 万选志, 刘明实, 刘子龙, 等. 重金属酸性废水回用选矿厂的实验研究[J]. 矿产综合利用, 2020(1):120-124.WAN X Z, LIU M S, LIU Z L, et al. Experimental study on reuse of heavy metal acidic wastewater in mineral processing plant[J]. Multipurpose Utilization of Mineral Resources, 2020(1):120-124.

    Google Scholar

    WAN X Z, LIU M S, LIU Z L, et al. Experimental study on reuse of heavy metal acidic wastewater in mineral processing plant[J]. Multipurpose Utilization of Mineral Resources, 2020(1):120-124.

    Google Scholar

    [7] 廖祥文. 含砷工业废水处理技术现状及展望[J]. 矿产综合利用, 2006(4):27-30.LIAO X W. Present situation and prospects of technology for treating As-containing industrial wasterwater[J]. Multipurpose Utilization of Mineral Resources, 2006(4):27-30. doi: 10.3969/j.issn.1000-6532.2006.04.008

    CrossRef Google Scholar

    LIAO X W. Present situation and prospects of technology for treating As-containing industrial wasterwater[J]. Multipurpose Utilization of Mineral Resources, 2006(4):27-30. doi: 10.3969/j.issn.1000-6532.2006.04.008

    CrossRef Google Scholar

    [8] 李勇, 徐媛, 祝星, 等. 含砷石膏渣水泥固化/稳定化: 预煅烧影响和砷固化机理(英文)[J]. 过程工程学报, 2018, 18(S1):111-121.LI Y, XU Y, ZHU X, et al. Curing/stabilization of arsenic-containing gypsum slag cements: effects of precalcination and mechanisms of arsenic curing (English)[J]. The Chinese Journal of Process Engineering, 2018, 18(S1):111-121.

    Google Scholar

    LI Y, XU Y, ZHU X, et al. Curing/stabilization of arsenic-containing gypsum slag cements: effects of precalcination and mechanisms of arsenic curing (English)[J]. The Chinese Journal of Process Engineering, 2018, 18(S1):111-121.

    Google Scholar

    [9] 孙英娟, 周旋, 岳丽娜, 等. 工业固废制备聚合氯化铝铁及其在煤泥废水处理中的应用[J]. 矿产综合利用, 2021(1):144-150.SUN Y J, ZHOU X, YUE L N, et al. Preparation of polymeric aluminum iron chloride from industrial solid waste and its application in coal slurry wastewater treatment[J]. Multipurpose Utilization of Mineral Resources, 2021(1):144-150.

    Google Scholar

    SUN Y J, ZHOU X, YUE L N, et al. Preparation of polymeric aluminum iron chloride from industrial solid waste and its application in coal slurry wastewater treatment[J]. Multipurpose Utilization of Mineral Resources, 2021(1):144-150.

    Google Scholar

    [10] 张水龙, 刘金艳, 杨林恒, 等. 吉林铜钴镍多金属硫化矿的生物浸出实验研究[J]. 矿产综合利用, 2020(1):50-53.ZHANG S L, LIU J Y, YANG L H, et al. Experimental study on bioleaching of copper-cobalt-nickel polymetallic sulfide ores from Jilin, China[J]. Multipurpose Utilization of Mineral Resources, 2020(1):50-53.

    Google Scholar

    ZHANG S L, LIU J Y, YANG L H, et al. Experimental study on bioleaching of copper-cobalt-nickel polymetallic sulfide ores from Jilin, China[J]. Multipurpose Utilization of Mineral Resources, 2020(1):50-53.

    Google Scholar

    [11] 朱李俊, 王文君, 金强. 用钢渣除去废水中的Cr(Ⅲ)和Cr(Ⅵ)实验研究[J]. 矿产综合利用, 2019(5):98-101.ZHU L J, WANG W J, JIN Q. Experimental study on removal of Cr(III) and Cr(VI) from wastewater by steel slag[J]. Multipurpose Utilization of Mineral Resources, 2019(5):98-101.

    Google Scholar

    ZHU L J, WANG W J, JIN Q. Experimental study on removal of Cr(III) and Cr(VI) from wastewater by steel slag[J]. Multipurpose Utilization of Mineral Resources, 2019(5):98-101.

    Google Scholar

    [12] 陈庆来, 王春乔. 一种处理化工废水用封闭式中心传动浓缩机[J]. 矿产综合利用, 2019(3):131-132.CHEN Q L, WANG C Q. A kind of closed center drive thickener for treating chemical wastewater[J]. Multipurpose Utilization of Mineral Resources, 2019(3):131-132. doi: 10.3969/j.issn.1000-6532.2019.03.029

    CrossRef Google Scholar

    CHEN Q L, WANG C Q. A kind of closed center drive thickener for treating chemical wastewater[J]. Multipurpose Utilization of Mineral Resources, 2019(3):131-132. doi: 10.3969/j.issn.1000-6532.2019.03.029

    CrossRef Google Scholar

    [13] 李瑞, 董宪姝, 李宏亮, 等. 焙烧改性的浮选尾煤对水中Cr(Ⅵ)吸附研究[J]. 矿产综合利用, 2021(2):63-69.LI R, DONG X S, LI H L, et al. Adsorption of Cr(VI) in water by roast-modified flotation tailing coal[J]. Multipurpose Utilization of Mineral Resources, 2021(2):63-69.

    Google Scholar

    LI R, DONG X S, LI H L, et al. Adsorption of Cr(VI) in water by roast-modified flotation tailing coal[J]. Multipurpose Utilization of Mineral Resources, 2021(2):63-69.

    Google Scholar

    [14] 王曼曼, 石林, 张洋洋. 伊利石合成沸石相吸附材料及对水中Ni2+的吸附[J]. 矿产综合利用, 2021(2):192-198.WANG M M, SHI L, ZHANG Y Y. Synthesis of zeolite-phase adsorbent materials from illite and adsorption of Ni2+ in water[J]. Multipurpose Utilization of Mineral Resources, 2021(2):192-198.

    Google Scholar

    WANG M M, SHI L, ZHANG Y Y. Synthesis of zeolite-phase adsorbent materials from illite and adsorption of Ni2+ in water[J]. Multipurpose Utilization of Mineral Resources, 2021(2):192-198.

    Google Scholar

    [15] 舒波, 周尚, 张宝辉, 等. 有色冶炼含砷污酸处置及固砷技术进展[J]. 矿产保护与利用, 2020, 40(3):12-20.SHU B, ZHOU S, ZHANG B H, et al. Advances in arsenic-containing acid disposal and arsenic fixation technology for non-ferrous smelting[J]. Conservation and Utilization of Mineral Resources, 2020, 40(3):12-20.

    Google Scholar

    SHU B, ZHOU S, ZHANG B H, et al. Advances in arsenic-containing acid disposal and arsenic fixation technology for non-ferrous smelting[J]. Conservation and Utilization of Mineral Resources, 2020, 40(3):12-20.

    Google Scholar

    [16] 刘永龙, 郭庆民. 石灰-铁盐+双氧水法在铜冶炼酸性废水处理中的应用[J]. 硫酸工业, 2020(3):42-45.LIU Y L, GUO Q M. Application of lime-iron salt + hydrogen peroxide method in acidic wastewater treatment of copper smelting[J]. Sulphuric Acid Industry, 2020(3):42-45. doi: 10.3969/j.issn.1002-1507.2020.03.011

    CrossRef Google Scholar

    LIU Y L, GUO Q M. Application of lime-iron salt + hydrogen peroxide method in acidic wastewater treatment of copper smelting[J]. Sulphuric Acid Industry, 2020(3):42-45. doi: 10.3969/j.issn.1002-1507.2020.03.011

    CrossRef Google Scholar

    [17] 杨鸿翔. 福建某矿山含铜酸性废水的硫化法处理技术优化与实践[J]. 现代矿业, 2021, 37(4):216-218.YANG H X. Optimization and practice of sulfidation treatment technology of copper-containing acidic wastewater from a mine in Fujian, China[J]. Modern Mining, 2021, 37(4):216-218. doi: 10.3969/j.issn.1674-6082.2021.04.055

    CrossRef Google Scholar

    YANG H X. Optimization and practice of sulfidation treatment technology of copper-containing acidic wastewater from a mine in Fujian, China[J]. Modern Mining, 2021, 37(4):216-218. doi: 10.3969/j.issn.1674-6082.2021.04.055

    CrossRef Google Scholar

    [18] 李庆超, 应国民, 詹中华, 等. 铜冶炼污酸除砷工艺比较研究[J]. 化学工程, 2017, 45(4):10-14.LI Q C, YING G M, ZHAN Z H, et al. Comparative study of acid arsenic removal processes for copper smelting fouling[J]. Chemical Engineering(CHINA), 2017, 45(4):10-14. doi: 10.3969/j.issn.1005-9954.2017.04.003

    CrossRef Google Scholar

    LI Q C, YING G M, ZHAN Z H, et al. Comparative study of acid arsenic removal processes for copper smelting fouling[J]. Chemical Engineering(CHINA), 2017, 45(4):10-14. doi: 10.3969/j.issn.1005-9954.2017.04.003

    CrossRef Google Scholar

    [19] FilippouD, DemopoulosGP. Arsenic immobilization by controlled scorodite precipitation[J]. JOM, 1997, 49(12):52-55. doi: 10.1007/s11837-997-0034-3

    CrossRef Google Scholar

    [20] SinghaniaS, WangQ, FilippouD, et al. Temperature and seeding effects on the precipitation of scorodite from sulfate solutions under atmospheric-pressure conditions[J]. Metallurgical& Materials Transactions B, 2005, 36(3):327-333.

    Google Scholar

    [21] 王长印, 李旻廷, 魏昶, 等. As(Ⅴ)-Fe(Ⅱ)体系常压臭葱石合成过程过饱和度对形貌和稳定性的影响[J]. 中国有色金属学报, 2020, 30(4):896-905.WANG C Y, LI M T, WEI C, et al. Effect of supersaturation on morphology and stability during synthesis of odorite in the As(V)-Fe(II) system at atmospheric pressure[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(4):896-905. doi: 10.11817/j.ysxb.1004.0609.2020-35765

    CrossRef Google Scholar

    WANG C Y, LI M T, WEI C, et al. Effect of supersaturation on morphology and stability during synthesis of odorite in the As(V)-Fe(II) system at atmospheric pressure[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(4):896-905. doi: 10.11817/j.ysxb.1004.0609.2020-35765

    CrossRef Google Scholar

    [22] 潘钢, 雷勇. 敞口酸溶-电感耦合等离子体发射光谱法测定锑精矿中的砷[J]. 矿产综合利用, 2021(4):201-205.PAN G, LEI Y. Determination of arsenic in antimony concentrates by open mouth acid dissolution-inductively coupled plasma emission spectrometry[J]. Multipurpose Utilization of Mineral Resources, 2021(4):201-205.

    Google Scholar

    PAN G, LEI Y. Determination of arsenic in antimony concentrates by open mouth acid dissolution-inductively coupled plasma emission spectrometry[J]. Multipurpose Utilization of Mineral Resources, 2021(4):201-205.

    Google Scholar

    [23] 袁松, 李旻廷, 魏昶, 等. 铜冶炼烟尘酸性浸出液中铜、砷分离行为研究[J/OL]. 化学工业与工程: 1-11[2022-04-11].YUAN S, LI M T, WEI C, et al. Study on the separation behavior of copper and arsenic in acidic leach solution of copper smelting fumes[J/OL]. ChemicalIndustry and Engineering 1-11[2022-04-11].

    Google Scholar

    YUAN S, LI M T, WEI C, et al. Study on the separation behavior of copper and arsenic in acidic leach solution of copper smelting fumes[J/OL]. ChemicalIndustry and Engineering 1-11[2022-04-11].

    Google Scholar

    [24] 范旷生, 何贵香, 刘平, 等. 臭葱石沉淀法脱除铜烟尘中的砷[J]. 矿冶工程, 2020, 40(3):95-98.FAN K S, HE G X, LIU P, et al. Removal of arsenic from copper soot by smelly onionite precipitation method[J]. Mining and Metallurgical Engineering, 2020, 40(3):95-98. doi: 10.3969/j.issn.0253-6099.2020.03.025

    CrossRef Google Scholar

    FAN K S, HE G X, LIU P, et al. Removal of arsenic from copper soot by smelly onionite precipitation method[J]. Mining and Metallurgical Engineering, 2020, 40(3):95-98. doi: 10.3969/j.issn.0253-6099.2020.03.025

    CrossRef Google Scholar

    [25] 余自秀, 李存兄, 魏昶, 等. 砷铁水热共沉淀制备大颗粒臭葱石[J]. 过程工程学报, 2018, 18(1):126-132.YU Z X, LI C X, WEI C, et al. Preparation of large particles of stinking onionite by hydrothermal co-precipitation of arsenic and iron[J]. The Chinese Journal of Process Engineering, 2018, 18(1):126-132. doi: 10.12034/j.issn.1009-606X.217178

    CrossRef Google Scholar

    YU Z X, LI C X, WEI C, et al. Preparation of large particles of stinking onionite by hydrothermal co-precipitation of arsenic and iron[J]. The Chinese Journal of Process Engineering, 2018, 18(1):126-132. doi: 10.12034/j.issn.1009-606X.217178

    CrossRef Google Scholar

    [26] FujitaT, TaguchiR, AbumiyaM, et al. Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. PartI[J]. Hydrometallurgy, 2008, 90(2-4):92-102. doi: 10.1016/j.hydromet.2007.09.012

    CrossRef Google Scholar

    [27] 曹俊雅, 张凯伦, 李媛媛, 等. 臭氧氧化合成臭葱石除砷[J]. 过程工程学报, 2018, 18(3):517-521.CAO J Y, ZHANG K L, LI Y Y, et al. Arsenic removal by ozone oxidation of synthetic stinking onionite[J]. The Chinese Journal of Process Engineering, 2018, 18(3):517-521. doi: 10.12034/j.issn.1009-606X.217417

    CrossRef Google Scholar

    CAO J Y, ZHANG K L, LI Y Y, et al. Arsenic removal by ozone oxidation of synthetic stinking onionite[J]. The Chinese Journal of Process Engineering, 2018, 18(3):517-521. doi: 10.12034/j.issn.1009-606X.217417

    CrossRef Google Scholar

    [28] 范旷生, 何贵香, 刘平, 等. 臭葱石法处理含砷废水[J]. 化工技术与开发, 2019, 48(12):61-63.FAN K S, HE G X, LIU P, et al. Treatment of arsenic-containing wastewater by stinking onionite method[J]. Technology& Development of Chemical Industry, 2019, 48(12):61-63.

    Google Scholar

    FAN K S, HE G X, LIU P, et al. Treatment of arsenic-containing wastewater by stinking onionite method[J]. Technology& Development of Chemical Industry, 2019, 48(12):61-63.

    Google Scholar

    [29] Naoko, Okibe, Ryohei, et al. The effect of heterogeneous seed crystalsonarsenite removal as biogenic scorodite[J]. Materials Transactions, 2020, 61(2):387-395. doi: 10.2320/matertrans.M-M2019858

    CrossRef Google Scholar

    [30] 张鹏, 李存兄, 魏昶, 等. 铜和锌离子对水热臭葱石沉砷过程的影响[J]. 中南大学学报(自然科学版), 2019, 50(11):2645-2655.ZHANG P, LI C X, WEI C, et al. Effect of zinc and copper ions on ferric arsenate precipitation in hydrothermal scorodite[J]. Journal of Central South University (Science and Technology), 2019, 50(11):2645-2655.

    Google Scholar

    ZHANG P, LI C X, WEI C, et al. Effect of zinc and copper ions on ferric arsenate precipitation in hydrothermal scorodite[J]. Journal of Central South University (Science and Technology), 2019, 50(11):2645-2655.

    Google Scholar

    [31] 王长印, 李旻廷, 魏昶, 等. 有色金属工业含砷污染物处理研究进展[J]. 矿冶, 2020, 29(1):86-93.WANG C Y, LI M T, WEI C, et al. Progress in treatment of arsenic-containing contaminant in non-ferrous metal industry[J]. Mining & Metallurgy, 2020, 29(1):86-93. doi: 10.3969/j.issn.1005-7854.2020.01.17

    CrossRef Google Scholar

    WANG C Y, LI M T, WEI C, et al. Progress in treatment of arsenic-containing contaminant in non-ferrous metal industry[J]. Mining & Metallurgy, 2020, 29(1):86-93. doi: 10.3969/j.issn.1005-7854.2020.01.17

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(434) PDF downloads(135) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint