Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 46, No. 1
Article Contents

ZHOU Lihua. Flotation Process Optimization of a Copper Molybdenum Polymetallic Ore in Xizang[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 125-131. doi: 10.3969/j.issn.1000-6532.2025.01.015
Citation: ZHOU Lihua. Flotation Process Optimization of a Copper Molybdenum Polymetallic Ore in Xizang[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(1): 125-131. doi: 10.3969/j.issn.1000-6532.2025.01.015

Flotation Process Optimization of a Copper Molybdenum Polymetallic Ore in Xizang

  • A low-grade porphyry type silver bearing copper molybdenum ore in Xizang contains 0.35% Cu, 0.018% Mo, 2.18 g/t Ag and 2.5% S. The copper mineral is mainly chalcopyrite, followed by chalcocite. The molybdenum mineral is mainly molybdenite, the sulfur mineral is mainly pyrite, and the silver bearing mineral is silver. Pyrite has excellent floatability. The process of "floatability of copper and molybdenum - enhanced copper separation - copper sulfur separation" is adopted, combined with the use of strong selective collector BK-345, to obtain copper molybdenum mixed concentrate in low alkali environment. Through enhanced copper separation, the recovery of copper metal is improved. According to the ore characteristics of fine particles of copper minerals, the copper sulfur mixed coarse concentrate is superfine ground to -20 μm. The flotation closed-circuit test finally obtained the copper molybdenum mixed concentrate containing 26.88% Cu, 1.65% Mo, 110.5 g/t Ag, 61.2% Cu recovery, 73.9% Mo recovery and 40% Ag recovery, and obtained copper concentrate 2 containing 19.07% Cu, 112.7 g/t Ag, 24.7% Cu recovery and 23.2% Ag recovery. The comprehensive copper concentrate contained 24.04% Cu, 1.17% Mo and 111.3 g/t Ag, 85.9% Cu recovery, 82.3% Mo recovery and 63.2% Ag recovery. In the process of "total sulfur flotation copper sulfur separation", the separation of copper, molybdenum and sulfur needs to be restrained by adding strong lime, molybdenite is also strongly restrained, and the molybdenum recovery is low, only 57.5%. Compared with the mixed flotation process, on the premise that the recovery rate of other metals is slightly improved, the grade of molybdenum metal in the equal floatable process is increased by 0.84 percentage points and the recovery rate of molybdenum is increased by 16.4 percentage points.

  • 加载中
  • [1] 赵开乐, 闫武, 刘飞燕, 等. 细粒嵌布硫化钼矿铜钼高效分离技术[J]. 矿产综合利用, 2021(2):1-7.ZHAO K L, YAN W, LIU F Y, et al. High efficiency separation of chalcopyriten from a fine disseminated molybdenite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):1-7. doi: 10.3969/j.issn.1000-6532.2021.02.001

    CrossRef Google Scholar

    ZHAO K L, YAN W, LIU F Y, et al. High efficiency separation of chalcopyriten from a fine disseminated molybdenite[J]. Multipurpose Utilization of Mineral Resources, 2021(2):1-7. doi: 10.3969/j.issn.1000-6532.2021.02.001

    CrossRef Google Scholar

    [2] 张汉鑫, 李慧, 梁精龙, 等. 稀有金属钼资源回收现状及进展[J]. 矿产综合利用, 2020(1):47-49.ZHANG H X, LI H, LIANG J L, et al. Current status and progress of rare metal molybdenum resource recovery[J]. Multipurpose Utilization of Mineral Resources, 2020(1):47-49 doi: 10.3969/j.issn.1000-6532.2020.01.009

    CrossRef Google Scholar

    ZHANG H X, LI H, LIANG J L, et al. Current status and progress of rare metal molybdenum resource recovery[J]. Multipurpose Utilization of Mineral Resources, 2020(1):47-49 doi: 10.3969/j.issn.1000-6532.2020.01.009

    CrossRef Google Scholar

    [3] 李育彪, 段婉青, 杨旭, 等. 铜钼硫化矿浮选分离中H2O2的作用机理研究[J]. 金属矿山, 2021(12):34-40.LI Y B, DUAN W Q, YANG X, et al. Study on the action mechanism of H2O2 in flotation separation of copper molybdenum sulfide ore[J]. Metal Mine, 2021(12):34-40.

    Google Scholar

    LI Y B, DUAN W Q, YANG X, et al. Study on the action mechanism of H2O2 in flotation separation of copper molybdenum sulfide ore[J]. Metal Mine, 2021(12):34-40.

    Google Scholar

    [4] 焦跃旭, 姚新, 陈鹏, 等. 新型高效辉钼矿抑制剂及其作用机理研究[J]. 矿冶工程, 2020, 40(6):30-33.JIAO Y X, YAO X, CHEN P, et al. Study on new high efficiency molybdenite inhibitor and its action mechanism[J]. mining and Metallurgy Engineering, 2020, 40(6):30-33. doi: 10.3969/j.issn.0253-6099.2020.06.008

    CrossRef Google Scholar

    JIAO Y X, YAO X, CHEN P, et al. Study on new high efficiency molybdenite inhibitor and its action mechanism[J]. mining and Metallurgy Engineering, 2020, 40(6):30-33. doi: 10.3969/j.issn.0253-6099.2020.06.008

    CrossRef Google Scholar

    [5] 张红英, 刘进, 徐少华, 等. 某低品位铜钼矿选矿工艺试验研究[J]. 有色金属(选矿部分), 2021(2):88-92.ZHANG H Y, LIU J, XU S H, et al. Experimental study on beneficiation process of a low-grade copper-molybdenum ore[J]. Nonferrous Metals (Mineral Processing Section), 2021(2):88-92.

    Google Scholar

    ZHANG H Y, LIU J, XU S H, et al. Experimental study on beneficiation process of a low-grade copper-molybdenum ore[J]. Nonferrous Metals (Mineral Processing Section), 2021(2):88-92.

    Google Scholar

    [6] 杨晓峰, 刘瑶瑶, 邹洪顺达, 等. 黑龙江某斑岩型铜钼矿的选矿实验研究[J]. 黑龙江科技大学学报, 2021, 31(4):422-427.YANG X F, LIU Y Y, ZOUHONG S D, et al. Experimental study on beneficiation of a porphyry copper molybdenum ore in Heilongjiang[J]. Journal of Heilongjiang University of Science and Technology, 2021, 31(4):422-427. doi: 10.3969/j.issn.2095-7262.2021.04.005

    CrossRef Google Scholar

    YANG X F, LIU Y Y, ZOUHONG S D, et al. Experimental study on beneficiation of a porphyry copper molybdenum ore in Heilongjiang[J]. Journal of Heilongjiang University of Science and Technology, 2021, 31(4):422-427. doi: 10.3969/j.issn.2095-7262.2021.04.005

    CrossRef Google Scholar

    [7] 冯上林. 某钨钼矿铜钼分离选矿试验研究[J]. 现代矿业, 2021, 7(7):167-168.FENG S L. Experimental study on copper molybdenum separation and beneficiation of a tungsten molybdenum ore[J]. Modern Mining, 2021, 7(7):167-168. doi: 10.3969/j.issn.1674-6082.2021.07.045

    CrossRef Google Scholar

    FENG S L. Experimental study on copper molybdenum separation and beneficiation of a tungsten molybdenum ore[J]. Modern Mining, 2021, 7(7):167-168. doi: 10.3969/j.issn.1674-6082.2021.07.045

    CrossRef Google Scholar

    [8] 逢军武, 张玲, 达娃卓玛, 等. 某选矿厂处理角岩型铜硫矿选铜浮选实验[J]. 矿产综合利用, 2021(4):139-143.PANG J W, ZHANG L, DAWA Z M, et al. Treatment of breccia in a concentrator copper sulphur ore flotation test of copper separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):139-143.

    Google Scholar

    PANG J W, ZHANG L, DAWA Z M, et al. Treatment of breccia in a concentrator copper sulphur ore flotation test of copper separation[J]. Multipurpose Utilization of Mineral Resources, 2021(4):139-143.

    Google Scholar

    [9] 张兴旺, 孙志勇. 陕西某钼矿工艺矿物学[J]. 矿产综合利用, 2021(5):186-192.ZHANG X W, SUN Z Y. Technological mineralogy of a molybdenum mine in Shaanxi[J]. Multipurpose Utilization of Mineral Resources, 2021(5):186-192. doi: 10.3969/j.issn.1000-6532.2021.05.031

    CrossRef Google Scholar

    ZHANG X W, SUN Z Y. Technological mineralogy of a molybdenum mine in Shaanxi[J]. Multipurpose Utilization of Mineral Resources, 2021(5):186-192. doi: 10.3969/j.issn.1000-6532.2021.05.031

    CrossRef Google Scholar

    [10] 简胜, 胡岳华, 孙伟. 西藏某低品位铜钼矿选矿工艺研究[J]. 矿产综合利用, 2019(5):32-36.JIAN S, HU Y H, SUN W. Process study on a low- grade mineral copper-molybdenum ore in Xizang[J]. Multipurpose Utilization of Mineral Resources, 2019(5):32-36. doi: 10.3969/j.issn.1000-6532.2019.05.007

    CrossRef Google Scholar

    JIAN S, HU Y H, SUN W. Process study on a low- grade mineral copper-molybdenum ore in Xizang[J]. Multipurpose Utilization of Mineral Resources, 2019(5):32-36. doi: 10.3969/j.issn.1000-6532.2019.05.007

    CrossRef Google Scholar

    [11] 黄鹏亮, 杨丙桥, 胡杨甲, 等. 氧化预处理对铜钼浮选分离效果的影响[J]. 矿冶工程, 2021, 41(3):46-56.HUANG P L, YANG B Q, HU Y J, et al. Effect of oxidation pretreatment on flotation separation of copper and molybdenum[J]. Mining and Metallurgical Engineering, 2021, 41(3):46-56. doi: 10.3969/j.issn.0253-6099.2021.03.011

    CrossRef Google Scholar

    HUANG P L, YANG B Q, HU Y J, et al. Effect of oxidation pretreatment on flotation separation of copper and molybdenum[J]. Mining and Metallurgical Engineering, 2021, 41(3):46-56. doi: 10.3969/j.issn.0253-6099.2021.03.011

    CrossRef Google Scholar

    [12] 李莹, 龚丽, 梁泽跃. 云南某斑岩型铜钼矿混合浮选捕收剂实验及工业应用[J]. 矿产综合利用, 2021(2):23-26.LI Y, GONG L, LIANG Z Y. Experiment and application research on mixed flotation collector of copper-molybdenum porphyry mine in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2021(2):23-26. doi: 10.3969/j.issn.1000-6532.2021.02.005

    CrossRef Google Scholar

    LI Y, GONG L, LIANG Z Y. Experiment and application research on mixed flotation collector of copper-molybdenum porphyry mine in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2021(2):23-26. doi: 10.3969/j.issn.1000-6532.2021.02.005

    CrossRef Google Scholar

    [13] 达娃卓玛, 刘潘, 李国栋, 等. 西藏某混合铅锌矿优先浮选实验研究[J]. 矿产综合利用, 2021(3): 82-87.DAWA Z M , LIU P, LI G D, et al. Preferential flotation research on a mixed Pb-Zn ore in Xizang [J]. Multipurpose Utilization of Mineral Resources, 2021(3): 82-87.

    Google Scholar

    DAWA Z M , LIU P, LI G D, et al. Preferential flotation research on a mixed Pb-Zn ore in Xizang [J]. Multipurpose Utilization of Mineral Resources, 2021(3): 82-87.

    Google Scholar

    [14] 王国彬, 蓝卓越, 赵清平, 等. 钼尾矿中有价金属的综合回收研究现状[J]. 矿产综合利用, 2021(3):140-148.WANG G B, LAN Z Y, ZHAO Q P, et al. Review of comprehensive recovery of valuable metals from molybdenum[J]. Multipurpose Utilization of Mineral Resources, 2021(3):140-148.

    Google Scholar

    WANG G B, LAN Z Y, ZHAO Q P, et al. Review of comprehensive recovery of valuable metals from molybdenum[J]. Multipurpose Utilization of Mineral Resources, 2021(3):140-148.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(5)

Article Metrics

Article views(263) PDF downloads(348) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint