Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 45, No. 5
Article Contents

SUN Xiaolei, ZHANG Lingxi, CHEN Min. Evolution of Viscosity and Structure Property during the Two-step Reduction of Vanadium Slags[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 38-45. doi: 10.3969/j.issn.1000-6532.2024.05.006
Citation: SUN Xiaolei, ZHANG Lingxi, CHEN Min. Evolution of Viscosity and Structure Property during the Two-step Reduction of Vanadium Slags[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 38-45. doi: 10.3969/j.issn.1000-6532.2024.05.006

Evolution of Viscosity and Structure Property during the Two-step Reduction of Vanadium Slags

More Information
  • This is an article in the field of metallurgical engineering. At present, the cumbersome product routing of FeV alloy causes high energy consumption and hazardous leaching liquor waste. Therefore, a two-step direct reduction to produce FeV alloy from vanadium slags using photovoltaic silicon wafer cutting waste and aluminum ash as reductant, was investigated to solve the above problems. In the present work, the evolution of viscosity and the melt structure during the two-step reduction process of vanadium slags was investigated. The results showed that at 1 873 K, FeO-V2O3-Cr2O3-MnO-SiO2-TiO2-CaO slag system corresponding to the prereduction process, with the decrease of FeO content and the increase of SiO2 content in the slags, the size of FeCr2O4 spinel decreased gradually. The transition of the main influencing factor of the melt structure from FeO to SiO2 resulted in the increase of structure complexity, the structural complexity of the slag system increased from 0.176 to 2.517, the viscosity of the slag system increased from 0.092 Pa·s to 0.476 Pa·s. FeO-Cr2O3-MnO-V2O3-Al2O3-SiO2-TiO2-CaO slag system corresponding to the final reduction process, with the decrease of FeO, Cr2O3, MnO, V2O3 content and the increase of Al2O3 content in the slag, the size of MnCr2O4 spinel decreased gradually and the slag system comprised from a solid-liquid mixture to liquid, the transition of the main influencing factor from SiO2 to Al2O3 resulted in the transformation of the main structure of the slag system from silicate to aluminosilicate, the structural complexity of the slag system increased from 0.252 to 2.248, and the viscosity of the slag system increased from 0.091 Pa·s to 0.372 Pa·s.

  • 加载中
  • [1] 徐正震, 梁精龙, 李慧, 等. 含钒废弃物中钒的回收研究现状及展望[J]. 矿产综合利用, 2020(3): 8-13.XU Z Z, LIANG J L , LI H, et al. Research status and prospects of vanadium recovery in vanadium containing wastes[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 8-13.

    Google Scholar

    XU Z Z, LIANG J L , LI H, et al. Research status and prospects of vanadium recovery in vanadium containing wastes[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 8-13.

    Google Scholar

    [2] 吴诰, 潘鹏, 范鹤林, 等. 钒渣提钒研究现状及发展趋势[J]. 江西冶金, 2020, 40(4): 19-27.WU G, PAN P , FAN H L, et al. A review on the research status and development trend of vanadium extraction from vanadium slag[J]. Jiangxi Metallurgy, 2020, 40(4): 19-27.

    Google Scholar

    WU G, PAN P , FAN H L, et al. A review on the research status and development trend of vanadium extraction from vanadium slag[J]. Jiangxi Metallurgy, 2020, 40(4): 19-27.

    Google Scholar

    [3] 白凤仁, 刘福泉. 用钒渣直接冶炼钒铁的新工艺探讨[J]. 铁合金, 1995(1):30-33.BAI F R, LIU F Q. Discussion on new process of producing FeV using vanadium slag directly[J]. Ferro-Alloys, 1995(1):30-33.

    Google Scholar

    BAI F R, LIU F Q. Discussion on new process of producing FeV using vanadium slag directly[J]. Ferro-Alloys, 1995(1):30-33.

    Google Scholar

    [4] 赵昌明, 李博洋, 蔡永红, 等. 碳热还原含钒钢渣磷与钒的分离研究[J]. 矿产综合利用, 2018(6):106-110.ZHAO C M, LI B Y, CAI Y H, et al. Study on separation of vanadium slag, phosphorus and vanadium by carbon thermal reduction[J]. Multipurpose Utilization of Mineral Resources, 2018(6):106-110.

    Google Scholar

    ZHAO C M, LI B Y, CAI Y H, et al. Study on separation of vanadium slag, phosphorus and vanadium by carbon thermal reduction[J]. Multipurpose Utilization of Mineral Resources, 2018(6):106-110.

    Google Scholar

    [5] 周振宇, 唐萍, 侯自兵, 等. ω(SiO2)/ω(V2O3)对含钒炉渣熔化温度及黏度的影响[J]. 钢铁研究学报, 2019, 31(5):446-451.ZHOU Z Y, TANG P, HOU Z B, et al. Effect ofω(SiO2)/ω(V2O3) on melting and viscosity properties of vanadium slag[J]. Journal of Iron and Steel Research, 2019, 31(5):446-451.

    Google Scholar

    ZHOU Z Y, TANG P, HOU Z B, et al. Effect ofω(SiO2)/ω(V2O3) on melting and viscosity properties of vanadium slag[J]. Journal of Iron and Steel Research, 2019, 31(5):446-451.

    Google Scholar

    [6] Liu S, Wang L, Chou K C, et al. Viscosity measurement of FeO-SiO2-V2O3-TiO2 slags in the temperature range of 1644-1791 K and modelling by using ion-oxygen parameter[J]. Ironmaking& Steelmaking, 2017, 45(3):641-647.

    Google Scholar

    [7] 曾晓兰. 钒渣物化性质与相图研究[D]. 重庆: 重庆大学, 2012.ZENG X L. Research on physicochemical properties and phase diagram of vanadium slag [D]. Chongqing: Chongqing University, 2012.

    Google Scholar

    ZENG X L. Research on physicochemical properties and phase diagram of vanadium slag [D]. Chongqing: Chongqing University, 2012.

    Google Scholar

    [8] 宋文臣. 熔融态钒渣直接氧化提钒新工艺的基础研究[D]. 北京: 北京科技大学, 2015.SONG W C. Basic research on the novel process of vanadium extraction from molten vanadium slag by direct oxidation method[D]. Beijing: University of Science and Technology Beijing, 2015.

    Google Scholar

    SONG W C. Basic research on the novel process of vanadium extraction from molten vanadium slag by direct oxidation method[D]. Beijing: University of Science and Technology Beijing, 2015.

    Google Scholar

    [9] 曾小平, 吴冰, 江山, 等. 碳酸钙在高温条件下的变化过程分析[J]. 广东化工, 2010, 37(5):70-72.ZENG X P, WU B, JIANG S, et al. The analysis for the calcium carbonate at high temperatures[J]. Guangdong Chemical Industry, 2010, 37(5):70-72.

    Google Scholar

    ZENG X P, WU B, JIANG S, et al. The analysis for the calcium carbonate at high temperatures[J]. Guangdong Chemical Industry, 2010, 37(5):70-72.

    Google Scholar

    [10] 叶明峰, 吴光亮. 铬铁矿固态还原研究进展[J]. 矿产综合利用, 2018(6):13-18.YE M F, WU G L. Research progress of solid-state reduction of chromite[J]. Multipurpose Utilization of Mineral Resources, 2018(6):13-18.

    Google Scholar

    YE M F, WU G L. Research progress of solid-state reduction of chromite[J]. Multipurpose Utilization of Mineral Resources, 2018(6):13-18.

    Google Scholar

    [11] 黄兵. CaO-SiO2-FeO-Cr2O3-MgO-MnO渣系粘度模型及熔渣结构的研究[D]. 重庆: 重庆大学, 2019.HUANG B. Study on viscosity model and structure of CaO-SiO2-FeO-Cr2O3-MgO-MnO slag[D]. Chongqing: Chongqing University, 2019.

    Google Scholar

    HUANG B. Study on viscosity model and structure of CaO-SiO2-FeO-Cr2O3-MgO-MnO slag[D]. Chongqing: Chongqing University, 2019.

    Google Scholar

    [12] Li Q H, Yang S, Zhang Y, et al. Effects of MgO, Na2O, and B2O3 on the viscosity and structure of Cr2O3-bearing CaO-SiO2-Al2O3 slags[J]. ISIJ International, 2017, 57(4):689-696. doi: 10.2355/isijinternational.ISIJINT-2016-569

    CrossRef Google Scholar

    [13] 刘小杰, 兰臣臣, 朱二涛, 等. 几种添加剂对煤灰渣流动性影响研究[J]. 矿产综合利用, 2018(5):33-37.LIU X J, LAN C C, ZHU E T, et al. Investigation on effect of several additives on the fluidity of slag[J]. Multipurpose Utilization of Mineral Resources, 2018(5):33-37.

    Google Scholar

    LIU X J, LAN C C, ZHU E T, et al. Investigation on effect of several additives on the fluidity of slag[J]. Multipurpose Utilization of Mineral Resources, 2018(5):33-37.

    Google Scholar

    [14] Xu J F, S u L J, Chen D, et al. Experimental investigation on viscosity of CaO-MgO(-Al2O3)-SiO2slags and solid-liquid mixtures[J]. Journal of Iron and Steel Research(International), 2015, 22(12):1091-1097. doi: 10.1016/S1006-706X(15)30117-5

    CrossRef Google Scholar

    [15] Mcmillan P F, Poe B T, Gillet P H, et al. A study of SiO2 glass and supercooled liquid to 1950 K via high-temperature Raman spectroscopy[J]. Geochimicaet Cosmochimica Acta, 1994, 58(17):3653-3664. doi: 10.1016/0016-7037(94)90156-2

    CrossRef Google Scholar

    [16] Ippolito V, Andreozzi G B, Bersani D, et al. Raman fingerprint of chromate, aluminate and ferrite spinels[J]. Journal of Raman Spectroscopy, 2015, 46(12):1255-1264. doi: 10.1002/jrs.4764

    CrossRef Google Scholar

    [17] Dutta B, Pal D. Absorption and Raman spectroscopy: ferrimagnet spinel MnCr2O4[C]//DAE SolidState Physics Symposium 2018.2019.

    Google Scholar

    [18] Whittaker L, Velazquze J M, Banerjee S. A VO-seeded approach for the growth of star-shaped VO2 and V2O5 nanocrystals: facile synthesis, structural characterization, and elucidation of electronic structure[J]. CrystEngComm, 2011, 13(17):5328-5336. doi: 10.1039/c0ce00832j

    CrossRef Google Scholar

    [19] 严照照, 张淑会, 董晓旭, 等. 高炉渣的化学成分对其微观结构影响的研究现状[J]. 矿产综合利用, 2019(1):22-27.YAN Z Z, ZHANG S H, DONG X X, et al. Research status of the influence of blast furnace slag chemical composition on its microstructure[J]. Multipurpose Utilization of Mineral Resources, 2019(1):22-27.

    Google Scholar

    YAN Z Z, ZHANG S H, DONG X X, et al. Research status of the influence of blast furnace slag chemical composition on its microstructure[J]. Multipurpose Utilization of Mineral Resources, 2019(1):22-27.

    Google Scholar

    [20] 严志明. 铝硅酸盐基高炉渣结构和性能基础研究[D]. 重庆: 重庆大学, 2019.YAN Z M. Fundamental research on the structure and physicochemical properties of aluminosilicatebased blast furnace slag[D]. Chongqing : Chongqing University, 2019.

    Google Scholar

    YAN Z M. Fundamental research on the structure and physicochemical properties of aluminosilicatebased blast furnace slag[D]. Chongqing : Chongqing University, 2019.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(4)

Article Metrics

Article views(303) PDF downloads(73) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint