Citation: | SHAO Weihua, CHANG Xueyong, WANG Shoujing, PENG Tuaner. Multipurpose Recovery Test of Beryllium Ores in Hunan Province[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 31-37, 56. doi: 10.3969/j.issn.1000-6532.2024.05.005 |
This is an article in the field of mineral processing engineering. The beryllium ore in Hunan Province contains 0.47% BeO and 44.86% CaF2. The beryllium ore is chrysoberyl. The main gangue minerals are chlorite, mica, calcite, dolomite, etc. The disseminated particle size of beryllium ores is relatively fine, closely associated with chlorite, calcite, etc. So it is difficult to beneficiate. The beneficiation process flow is adopted by flotation of the sulphide ore first, then preferential flotation of fluorite, and the last reverse flotation of gangue minerals after flotation tailings deslimed. At the condition of the grinding fineness -0.074 mm accounted for 80%, the combined collectors of butylxanthate + ammonium dibutyldithiophosphate + sodium diethyldithiocarbamate for flotation were used to remove sulfide ores. Then fluorite concentrate with CaF2 grade of 96.32% and recovery rate of 70.34% were obtained by flotation of fluorite with the combined collectors oxidized paraffinum sodium salt + sodium oleate. After the flotation tailings are deslimed, reverse flotation of gangue minerals is adopted and the beryllium concentrate with BeO grade of 1.57% and recovery rate of 67.95% is obtained. The subsequent beryllium concentrate can be extracted by metallurgical method to obtain beryllium oxide products. This process realizes the multipurpose recovery of beryllium ores of chrysoberyl type and fluorite ores, and provides a reference for the development and utilization of the same type of beryllium ores.
[1] | 李宏, 谭秀民, 张秀峰, 等. 铍资源现状及其选冶技术进展[J]. 有色金属科学与工程, 2022, 13(4):44-53.LI H, TAN X M, ZHANG X F, et al. Present situation of beryllium resources and its progress of processing technology[J]. Nonferrous Metals Science and Engineering, 2022, 13(4):44-53. LI H, TAN X M, ZHANG X F, et al. Present situation of beryllium resources and its progress of processing technology[J]. Nonferrous Metals Science and Engineering, 2022, 13(4):44-53. |
[2] | 赖杨, 邓伟. 川西九龙打枪沟锂铍矿石特征及其铷元素赋存状态和分布规律研究[J]. 矿产综合利用, 2022(5): 185-192.LAI Y , DENG W. Characteristics of lithium beryllium ore and occurrence and distribution of rubidium element in ore, in Daqianggou, Jiulong, West Sichuan [J]. Multipurpose Utilization of Mineral Resources, 2022(5): 185-192. LAI Y , DENG W. Characteristics of lithium beryllium ore and occurrence and distribution of rubidium element in ore, in Daqianggou, Jiulong, West Sichuan [J]. Multipurpose Utilization of Mineral Resources, 2022(5): 185-192. |
[3] | 纪国平, 王亚洲. 低温反浮选绿柱石实验研究[J]. 新疆有色金属, 2020(2):20-24.JI G P, WANG Y Z. Experimental study on low temperature reverse flotation of beryl[J]. Xinjiang Nonferrous metals, 2020(2):20-24. JI G P, WANG Y Z. Experimental study on low temperature reverse flotation of beryl[J]. Xinjiang Nonferrous metals, 2020(2):20-24. |
[4] | 芮海锋. 金绿宝石型铍矿中铍的提取工艺研究[D]. 湘潭: 湘潭大学, 2017.RUI H F. Extraction of beryllium from chrysoberylore[D]. Xiangtan: Xiangtan University, 2017. RUI H F. Extraction of beryllium from chrysoberylore[D]. Xiangtan: Xiangtan University, 2017. |
[5] | 邓超翰. 一种从含锂的金绿宝石型铍矿中取锂铍的工艺[D]. 湘潭: 湘潭大学, 2018.DENG C H. Extraction of lithium and beryllium from lithium-containing chrysoberyl beryllium ore [D]. Xiangtan: Xiangtan University, 2018. DENG C H. Extraction of lithium and beryllium from lithium-containing chrysoberyl beryllium ore [D]. Xiangtan: Xiangtan University, 2018. |
[6] | 胡熙庚. 有色金属硫化矿选矿[M]. 北京: 冶金工业出版社, 1987: 271-274.HU X G. Beneficiation of nonferrous metal sulphide ore [M]. Beijing: Metallurgical Industry Press, 1987: 271-274. HU X G. Beneficiation of nonferrous metal sulphide ore [M]. Beijing: Metallurgical Industry Press, 1987: 271-274. |
[7] | 罗红莹. 油酸钠体系中锡石与绿泥石浮选选择性抑制作用研究[D]. 昆明: 昆明理工大学, 2020.LUO H Y. Study on selective inhibition of cassiterite and chlorite flotation in sodium oleatesystem[D]. Kunming: Kunming University of Science and Technology, 2015. LUO H Y. Study on selective inhibition of cassiterite and chlorite flotation in sodium oleatesystem[D]. Kunming: Kunming University of Science and Technology, 2015. |
[8] | 赵玉卿, 黄秉雄, 刘磊, 等. 蛇纹石、绿泥石、滑石的可浮性及抑制方法综述[J]. 矿产综合利用, 2018(2):7-11.ZHAO Y Q, HUANG B X, LIU L, et al. Summary of serpentine, chlorite, talc floatability and rejecting[J]. Multipurpose Utilization of Mineral Resources, 2018(2):7-11. doi: 10.3969/j.issn.1000-6532.2018.02.002 ZHAO Y Q, HUANG B X, LIU L, et al. Summary of serpentine, chlorite, talc floatability and rejecting[J]. Multipurpose Utilization of Mineral Resources, 2018(2):7-11. doi: 10.3969/j.issn.1000-6532.2018.02.002 |
[9] | 陈建建. 含云母方解石型萤石浮选实验研究[D]. 徐州: 中国矿业大学, 2015.CHEN J J. Experimental research on flotation of micaceous calcite-typefluorite[D]. Xuzhou: China University of Mining and Technolog, 2015. CHEN J J. Experimental research on flotation of micaceous calcite-typefluorite[D]. Xuzhou: China University of Mining and Technolog, 2015. |
[10] | 方霖, 郭珍旭, 刘长淼, 等. 云母矿物浮选研究进展[J]. 中国矿业, 2015, 24(3):131-136.FANG L, GUO Z X, LIU C M, et al. Research progress of mica flotation[J]. China Mining Magazine, 2015, 24(3):131-136. FANG L, GUO Z X, LIU C M, et al. Research progress of mica flotation[J]. China Mining Magazine, 2015, 24(3):131-136. |
[11] | 林东. 碳酸盐型萤石矿浮选选择性抑制及机理研究[D]. 贵州: 贵州大学, 2017.LIN D. Study on selective inhibition and mechanism of flotation of carbonate fluorite ore [D]. Guizhou: Guizhou University, 2017. LIN D. Study on selective inhibition and mechanism of flotation of carbonate fluorite ore [D]. Guizhou: Guizhou University, 2017. |
[12] | 黄俊玮, 张成强, 郭珍旭. 萤石矿浮选研究进展[J]. 现代矿业, 2017, 5(5):129-132+140.HUANG J W, ZHAGN C Q, GUO Z X. Research progress of fluorite flotation[J]. Modern Mining, 2017, 5(5):129-132+140. doi: 10.3969/j.issn.1674-6082.2017.05.029 HUANG J W, ZHAGN C Q, GUO Z X. Research progress of fluorite flotation[J]. Modern Mining, 2017, 5(5):129-132+140. doi: 10.3969/j.issn.1674-6082.2017.05.029 |
[13] | 米丽平. 从碎云母矿尾矿中回收云母的实验研究[D]. 唐山: 河北理工大学, 2005.MI L P. Experimental study on recovery of mica from crushed mica tailings[D]. Tangshan: Hebei University of Science and Technology. MI L P. Experimental study on recovery of mica from crushed mica tailings[D]. Tangshan: Hebei University of Science and Technology. |
[14] | 张先华, 张汉忠, 刘勇, 等. 一种从金绿宝石铍矿石提取氧化铍的选冶联合方法: CN201610054060.0 [P]. 2016-01-27.ZHANG X H, ZHANG H Z, LIU Y, et al. A combined method of beneficiation and metallurgy for extracting beryllium oxide from chrysoberyl ore: CN201610054060.0 [P]. 2016-01-27. ZHANG X H, ZHANG H Z, LIU Y, et al. A combined method of beneficiation and metallurgy for extracting beryllium oxide from chrysoberyl ore: CN201610054060.0 [P]. 2016-01-27. |
Intergrowth of chrysoberyl and chlorite
Intimate contact of harbor shape between chrysoberyl and sericite
Test flow of roughing condition
Test results of grinding fineness
Test results of sodium silicate dosage
Test results of collector dosage
Test results of fluorite rough concentrate regrinding
Flowsheet of desliming test
Flowsheet of reverse floating gangue minerals
Flowsheet of full process