Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 4
Article Contents

LUO Dapeng, HOU Jiang, HUANG Xiang, HAN Yuqi, YONG Yi. Research Progress and Development Suggestion on Resource Utilization of Titanium Gypsum[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 82-89. doi: 10.3969/j.issn.1000-6532.2024.04.012
Citation: LUO Dapeng, HOU Jiang, HUANG Xiang, HAN Yuqi, YONG Yi. Research Progress and Development Suggestion on Resource Utilization of Titanium Gypsum[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 82-89. doi: 10.3969/j.issn.1000-6532.2024.04.012

Research Progress and Development Suggestion on Resource Utilization of Titanium Gypsum

More Information
  • This is an article in the field of metallurgical engineering. Titanium gypsum is an industrial waste residue mainly composed of calcium sulfate dehydrate when the titanium dioxide is produced by the sulfuric acid method. At present, the utilization rate of titanium gypsum is relatively low due to its high impurity content , difficulty in dehydration and poor mechanical properties of the subsequent products. A large amount of titanium gypsum stored in the open air has caused great environmental and economic stress on the titanium dioxide enterprises, which is a serious waste of land resources. In this article, the current situation and research progress of global titanium gypsum in building materials, chemical industry, agriculture and climate change were summarized. The suggestions and prospects for the effective reduction and high-quality resource utilization of titanium gypsum from the aspects of structure adjustment, technological innovation, green development, standard formulation and policy support were provided.

  • 加载中
  • [1] 许惠, 傅敏. 钛白废液的治理与综合利用研究进展[J]. 矿产综合利用, 2006(4):34-7.XU H, FU M. Research progress in comprehensive utilization of spent acid and waste water in titanium dioxide production[J]. Multipurpose Utilization of Mineral Resources, 2006(4):34-7. doi: 10.3969/j.issn.1000-6532.2006.04.010

    CrossRef Google Scholar

    XU H, FU M. Research progress in comprehensive utilization of spent acid and waste water in titanium dioxide production[J]. Multipurpose Utilization of Mineral Resources, 2006(4):34-7. doi: 10.3969/j.issn.1000-6532.2006.04.010

    CrossRef Google Scholar

    [2] QCA B, WDA B, HSA B, et al. Synthesis of anhydrite from red gypsum and acidic wastewater treatment [J]. Journal of Cleaner Production, 2020, 278.

    Google Scholar

    [3] 靳必强, 张婷婷, 朱静平, 等. 钛石膏的开发利用研究进展[J]. 矿产综合利用, 2020(3):28-32.JIN B Q, ZHANG T T, ZHU J P, et al. The development and research progress of titanium gypsum exploitation and utilization[J]. Multipurpose Utilization of Mineral Resources, 2020(3):28-32. doi: 10.3969/j.issn.1000-6532.2020.03.005

    CrossRef Google Scholar

    JIN B Q, ZHANG T T, ZHU J P, et al. The development and research progress of titanium gypsum exploitation and utilization[J]. Multipurpose Utilization of Mineral Resources, 2020(3):28-32. doi: 10.3969/j.issn.1000-6532.2020.03.005

    CrossRef Google Scholar

    [4] 魏长河, 孙玉壮, 高兴保, 等. 钛石膏中重金属元素的浸出特性研究[J]. 环境工程, 2015, 33(5):131-5.WEI C H, SUN Y Z, GAO X B, et al. Study on leaching characteristics of heavy metals in titanium gypsum[J]. Environmental Engineering, 2015, 33(5):131-5.

    Google Scholar

    WEI C H, SUN Y Z, GAO X B, et al. Study on leaching characteristics of heavy metals in titanium gypsum[J]. Environmental Engineering, 2015, 33(5):131-5.

    Google Scholar

    [5] 杨贺, 陈伟, 梁贺之. 脱硫石膏—钛矿渣粉复合胶凝材料力学性能研究[J]. 钢铁钒钛, 2019, 40(6):67-72.YANG H, CHEN W, LIANG H Z. Study on mechanical properties of flue gas desulphurization gypsum-titanium slag powder composite cementitious material[J]. Iron Steel Vanadium Titauium, 2019, 40(6):67-72.

    Google Scholar

    YANG H, CHEN W, LIANG H Z. Study on mechanical properties of flue gas desulphurization gypsum-titanium slag powder composite cementitious material[J]. Iron Steel Vanadium Titauium, 2019, 40(6):67-72.

    Google Scholar

    [6] 冯智广, 于峰泉, 耿健. 钛石膏基复合胶凝材料抗碳化性能的研究[J]. 低温建筑技术, 2021, 43(9):1-4.FENG Z G, YU F Q, GENG J. Research on anti-carbonation performance of titanium gypsum-based composite cementitious material[J]. Low Temperature Architecture Technology, 2021, 43(9):1-4.

    Google Scholar

    FENG Z G, YU F Q, GENG J. Research on anti-carbonation performance of titanium gypsum-based composite cementitious material[J]. Low Temperature Architecture Technology, 2021, 43(9):1-4.

    Google Scholar

    [7] 陈夕全, 杨姝, 王伟, 等. 钛石膏净化工艺研究[J]. 山东化工, 2020, 49(6):44-5+7.CHEN X Q, YANG S, WANG W, et al. Study on purification process of titanium gypsum[J]. Shandong Chemical Industry, 2020, 49(6):44-5+7. doi: 10.3969/j.issn.1008-021X.2020.06.016

    CrossRef Google Scholar

    CHEN X Q, YANG S, WANG W, et al. Study on purification process of titanium gypsum[J]. Shandong Chemical Industry, 2020, 49(6):44-5+7. doi: 10.3969/j.issn.1008-021X.2020.06.016

    CrossRef Google Scholar

    [8] 龚家竹. 钛石膏与磷石膏固废耦合资源化利用技术进展[J]. 无机盐工业, 2019, 51(1):1-6+11.GONG J Z. Progress in coupling utilization technology of titanium gypsum and phosphogypsum solid waste[J]. Inorganic Chemicals Industry, 2019, 51(1):1-6+11.

    Google Scholar

    GONG J Z. Progress in coupling utilization technology of titanium gypsum and phosphogypsum solid waste[J]. Inorganic Chemicals Industry, 2019, 51(1):1-6+11.

    Google Scholar

    [9] 石鑫, 杨绍利, 马兰. “三石膏”综合利用现状及其新工艺[J]. 现代化工, 2020, 40(9):8-13+9.SHI X, YANG S L, MA L. Present situation of comprehensive utilization of“three-gypsum”and new technologies[J]. Modern Chemical Industry, 2020, 40(9):8-13+9.

    Google Scholar

    SHI X, YANG S L, MA L. Present situation of comprehensive utilization of“three-gypsum”and new technologies[J]. Modern Chemical Industry, 2020, 40(9):8-13+9.

    Google Scholar

    [10] 付一江. 工业副产石膏—钛石膏的现状及综合利用前景[J]. 钢铁钒钛, 2019, 40(6):63-6+100.FU Y J. Situation and comprehensive utilization prospect of titanium gypsum[J]. Iron Steel Vanadium Titauium, 2019, 40(6):63-6+100.

    Google Scholar

    FU Y J. Situation and comprehensive utilization prospect of titanium gypsum[J]. Iron Steel Vanadium Titauium, 2019, 40(6):63-6+100.

    Google Scholar

    [11] 谭纪林. 钛石膏作缓凝剂在水泥生产中的应用[J]. 水泥, 2017(2):20-23.TAN J L. Application of titanium gypsum as retarder in cement production.[J]. Cement, 2017(2):20-23.

    Google Scholar

    TAN J L. Application of titanium gypsum as retarder in cement production.[J]. Cement, 2017(2):20-23.

    Google Scholar

    [12] 黄绪泉, 严龙, 徐胜, 等. 钛石膏改性胶结材干化湖泊污泥效果及机理[J]. 环境工程学报, 2015, 9(4):1977-83.HUANG X Q, YAN L, XU S, et al. Drying effect and mechanism of lake sludge with titanium gypsum modified cementitious materials[J]. Chinese Journal of Environmental Engineering, 2015, 9(4):1977-83. doi: 10.12030/j.cjee.20150474

    CrossRef Google Scholar

    HUANG X Q, YAN L, XU S, et al. Drying effect and mechanism of lake sludge with titanium gypsum modified cementitious materials[J]. Chinese Journal of Environmental Engineering, 2015, 9(4):1977-83. doi: 10.12030/j.cjee.20150474

    CrossRef Google Scholar

    [13] 蔡宽, 阮长城, 李瑞萍, 等. 改性钛白石膏对阳离子染料罗丹明B的吸附性能[J]. 环境工程学报, 2015, 9(7):3184-90.CAI K, RUAN C C, LI R P, et al. Adsorption characteristics of cationic dye RhB on modified titanium gypsum[J]. Chinese Journal of Environmental Engineering, 2015, 9(7):3184-90. doi: 10.12030/j.cjee.20150718

    CrossRef Google Scholar

    CAI K, RUAN C C, LI R P, et al. Adsorption characteristics of cationic dye RhB on modified titanium gypsum[J]. Chinese Journal of Environmental Engineering, 2015, 9(7):3184-90. doi: 10.12030/j.cjee.20150718

    CrossRef Google Scholar

    [14] 王晓琪, 姚媛媛, 陈宝成, 等. 硫酸法钛石膏作为土壤调理剂在油菜上的施用效果研究 [J]. 水土保持学报, 2018, 32(4): 333-8+45.WANG X Q, YAO Y Y , CHEN B C , et al. Effects of titanium gypsum produced by sulfuric acid method as sold conditioner on rape seedings[J]. Journal of Soil And Water Conservation, 2018, 32(4): 333-338+345.

    Google Scholar

    WANG X Q, YAO Y Y , CHEN B C , et al. Effects of titanium gypsum produced by sulfuric acid method as sold conditioner on rape seedings[J]. Journal of Soil And Water Conservation, 2018, 32(4): 333-338+345.

    Google Scholar

    [15] AZDARPOUR A, ASADULLAH M, JUNIN R, et al. Direct carbonation of red gypsum to produce solid carbonates[J]. Fuel Processing Technology, 2014, 126:429-34. doi: 10.1016/j.fuproc.2014.05.028

    CrossRef Google Scholar

    [16] 李亮. 钛石膏在烧结砖中的应用研究[J]. 钢铁钒钛, 2015, 36(4):53-7.LI L. Study on the application of titanium gypsum in sintered brick[J]. Iron Steel Vanadium Titauium, 2015, 36(4):53-7. doi: 10.7513/j.issn.1004-7638.2015.04.010

    CrossRef Google Scholar

    LI L. Study on the application of titanium gypsum in sintered brick[J]. Iron Steel Vanadium Titauium, 2015, 36(4):53-7. doi: 10.7513/j.issn.1004-7638.2015.04.010

    CrossRef Google Scholar

    [17] ROSLI N, AZIZ H A, SELAMAT M R, et al. Physical, mechanical and chemical properties of dewatered sewage sludge and red gypsum mix as a potential recycling product[J]. Solid State Phenomena, 2019, 294:24-9. doi: 10.4028/www.scientific.net/SSP.294.24

    CrossRef Google Scholar

    [18] 彭志辉, 刘巧玲, 彭家惠, 等. 钛石膏作水泥缓凝剂研究[J]. 重庆建筑大学学报, 2004(1):93-6.PENG Z H, LIU Q L, PENG J H, et al. Study on titanium gypsum as set retarder for cement[J]. Journal of Chongqing Jianzhu University, 2004(1):93-6.

    Google Scholar

    PENG Z H, LIU Q L, PENG J H, et al. Study on titanium gypsum as set retarder for cement[J]. Journal of Chongqing Jianzhu University, 2004(1):93-6.

    Google Scholar

    [19] 张宾, 张玉玲, 陈博文. 钛石膏作缓凝剂对水泥净浆流动度影响的研究[J]. 水泥, 2020(8):1-5.ZHANG B, ZHANG Y L, CHEN B W. Effect of titanium as retarder on fluidity of cement paste[J]. Cement, 2020(8):1-5.

    Google Scholar

    ZHANG B, ZHANG Y L, CHEN B W. Effect of titanium as retarder on fluidity of cement paste[J]. Cement, 2020(8):1-5.

    Google Scholar

    [20] GAZQUEZ M J, BOLIVAR J P, VACA F, et al. Evaluation of the use of TiO2 industry red gypsum waste in cement production[J]. Cement & Concrete Composites, 2013, 37:76-81.

    Google Scholar

    [21] 杨贺, 陈伟, 梁贺之, 等 钛工业固废钛石膏胶凝性与强度机理分析 [J]. 非金属矿, 2021, 44(1): 100-3.YANG H, CHEN W, LIANG H Z, et al. Analysis on the cementation and strength mechanism of titanium industry solid waste titanium gypsum[J]. Non-Metallic Mines, 2021, 44(1): 100-3.

    Google Scholar

    YANG H, CHEN W, LIANG H Z, et al. Analysis on the cementation and strength mechanism of titanium industry solid waste titanium gypsum[J]. Non-Metallic Mines, 2021, 44(1): 100-3.

    Google Scholar

    [22] 刘振东. 用黄石膏、水泥和FAC-1配制混凝土的研究 [J]. 矿产综合利用, 2013 (3): 75-8.LIU Z D. Hydration mechanism of cementitious composite based on yellow gypsum & cement[J]. Non-Metallic Mines, 2007 (5): 26-8+39.

    Google Scholar

    LIU Z D. Hydration mechanism of cementitious composite based on yellow gypsum & cement[J]. Non-Metallic Mines, 2007 (5): 26-8+39.

    Google Scholar

    [23] 杨贺. 石灰碱激发钛石膏复合胶凝材料强度机理分析[J]. 钢铁钒钛, 2021, 42(3):111-8.YANG H. Analysis of the strength mechanism of lime-base activated titanium gypsum composite cementitious material[J]. Iron Steel Vanadium Titauium, 2021, 42(3):111-8. doi: 10.7513/j.issn.1004-7638.2021.03.017

    CrossRef Google Scholar

    YANG H. Analysis of the strength mechanism of lime-base activated titanium gypsum composite cementitious material[J]. Iron Steel Vanadium Titauium, 2021, 42(3):111-8. doi: 10.7513/j.issn.1004-7638.2021.03.017

    CrossRef Google Scholar

    [24] 刘代俊. 中国无机固体废弃物处理技术进展[J]. 无机盐工业, 2020, 52(3):1-10.LIU D J. Advance in inorganic solid waste treatment technology in China[J]. Inorganic Chemicals Industry, 2020, 52(3):1-10. doi: 10.11962/1006-4990.2019-0640

    CrossRef Google Scholar

    LIU D J. Advance in inorganic solid waste treatment technology in China[J]. Inorganic Chemicals Industry, 2020, 52(3):1-10. doi: 10.11962/1006-4990.2019-0640

    CrossRef Google Scholar

    [25] 孟维正, 刘伟杰, 曹新文. 改良钛石膏无侧限抗压强度研究[J]. 新型建筑材料, 2019, 46(7):28-31.MENG W Z, LIU W J, CAO X W. Research on the unconfined compressive strength of modified titanium gypsum[J]. New Building Materials, 2019, 46(7):28-31. doi: 10.3969/j.issn.1001-702X.2019.07.007

    CrossRef Google Scholar

    MENG W Z, LIU W J, CAO X W. Research on the unconfined compressive strength of modified titanium gypsum[J]. New Building Materials, 2019, 46(7):28-31. doi: 10.3969/j.issn.1001-702X.2019.07.007

    CrossRef Google Scholar

    [26] 赵玉静, 施惠生. 粉煤灰-钛白石膏路基材料的研究[J]. 建筑材料学报, 2000(4):328-34.ZHAO Y J, SHI H S. Study on composite for base pavement made of waste gypsum from TiO2 production and fly ash[J]. Journal Of Building Materials, 2000(4):328-34. doi: 10.3969/j.issn.1007-9629.2000.04.006

    CrossRef Google Scholar

    ZHAO Y J, SHI H S. Study on composite for base pavement made of waste gypsum from TiO2 production and fly ash[J]. Journal Of Building Materials, 2000(4):328-34. doi: 10.3969/j.issn.1007-9629.2000.04.006

    CrossRef Google Scholar

    [27] 朱浩泽, 于峰泉, 耿健, 等. 钛石膏基可控低强度材料强度及体积稳定性研究 [J]. 硅酸盐通报: 1-11.ZHU H Z, YU F Q, GENG J, et al. Compressive strength and volume stability of controlled low strength material based on red gypsum[J]. Bulletin of the Chinese Ceramic Society: 1-11.

    Google Scholar

    ZHU H Z, YU F Q, GENG J, et al. Compressive strength and volume stability of controlled low strength material based on red gypsum[J]. Bulletin of the Chinese Ceramic Society: 1-11.

    Google Scholar

    [28] 隋肃, 高子栋, 李国忠. 钛石膏的改性处理和力学性能研究[J]. 硅酸盐通报, 2010, 29(1):89-93.SUI S, GAO Z D, LI G Z. Study on modification and mechanical property of titanium gypsum[J]. Bulletin of the Chinese Ceramic Society, 2010, 29(1):89-93.

    Google Scholar

    SUI S, GAO Z D, LI G Z. Study on modification and mechanical property of titanium gypsum[J]. Bulletin of the Chinese Ceramic Society, 2010, 29(1):89-93.

    Google Scholar

    [29] CHEN H, WANG Z, PEI L, et al. Fabrication of baking-free bricks from iron ore tailings [J]. Current Materials Science: Formerly: Recent Patents on Materials Science, 2020.

    Google Scholar

    [30] ZHANG J, YAN Y, HU Z, et al. Properties and hydration behavior of Ti-extracted residues-red gypsum based cementitious materials[J]. Construction and Building Materials, 2019, 218(SEP.10):610-7.

    Google Scholar

    [31] B A A A, B M A, A R J, et al. Extraction of calcium from red gypsum for calcium carbonate production - science direct[J]. Fuel Processing Technology, 2015, 130(130):12-9.

    Google Scholar

    [32] 蒋美雪. 钛石膏除杂制备硫酸钙晶须与酸浸液处理研究[D]. 绵阳: 西南科技大学, 2019.JIANG M X. Study on impurity removal from titanium gypsum and preparation calcium sulfate whisker and the treatment of acid leaching solution[D]. Mianyang: Southwest University of Science and technology, 2019.

    Google Scholar

    JIANG M X. Study on impurity removal from titanium gypsum and preparation calcium sulfate whisker and the treatment of acid leaching solution[D]. Mianyang: Southwest University of Science and technology, 2019.

    Google Scholar

    [33] PENG X, ZHENG J, LIU Q, et al. Efficient removal of iron from red gypsum via synergistic regulation of gypsum phase transformation and iron speciation [J]. Science of The Total Environment, 2021: 148319.

    Google Scholar

    [34] 蔡宽, 阮长城, 李瑞萍, 等. 钛白石膏对重金属Pb(Ⅱ)的吸附特性研究[J]. 非金属矿, 2014, 37(6):74-7.CAI K, RUAN C C, LI R P, et al. Adsorption characteristics of heavy metal Pb(II) on titanium gypsum[J]. Non-Metallic Mines, 2014, 37(6):74-7. doi: 10.3969/j.issn.1000-8098.2014.06.023

    CrossRef Google Scholar

    CAI K, RUAN C C, LI R P, et al. Adsorption characteristics of heavy metal Pb(II) on titanium gypsum[J]. Non-Metallic Mines, 2014, 37(6):74-7. doi: 10.3969/j.issn.1000-8098.2014.06.023

    CrossRef Google Scholar

    [35] PETRUZZELLI G, SCATENA M, ROSELLINI I, et al. The use of compost – red gypsum mixture as a low cost alternative adsorbent for lead [J]. 2015.

    Google Scholar

    [36] 朱静平, 张婷婷, 刘洪, 等. 钛石膏制备片状钙白粉的生产工艺研究[J]. 非金属矿, 2019, 42(4):51-2+76.ZHU J P, ZHANG T T, LIU H, et al. Technical study on the preparation of flaky calcium white powder from titanium gypsum[J]. Non-Metallic Mines, 2019, 42(4):51-2+76. doi: 10.3969/j.issn.1000-8098.2019.04.015

    CrossRef Google Scholar

    ZHU J P, ZHANG T T, LIU H, et al. Technical study on the preparation of flaky calcium white powder from titanium gypsum[J]. Non-Metallic Mines, 2019, 42(4):51-2+76. doi: 10.3969/j.issn.1000-8098.2019.04.015

    CrossRef Google Scholar

    [37] 黄佳乐, 武斌, 陈葵, 等. 钛石膏作土壤镉污染改良剂的可行性分析[J]. 无机盐工业, 2016, 48(10):68-72.HUANG J L, WU B, CHEN K, et al. Red gypsum as a feasible additive for remediation of cadmium in soil[J]. Inorganic Chemicals Industry, 2016, 48(10):68-72.

    Google Scholar

    HUANG J L, WU B, CHEN K, et al. Red gypsum as a feasible additive for remediation of cadmium in soil[J]. Inorganic Chemicals Industry, 2016, 48(10):68-72.

    Google Scholar

    [38] FAUZIAH I, ZAUYAH S, JAMAL T. Characterization and land application of red gypsum: a waste product from the titanium dioxide industry[J]. Science of The Total Environment, 1996, 188(2-3):243-51. doi: 10.1016/0048-9697(96)05179-0

    CrossRef Google Scholar

    [39] 黄佳乐. 钛石膏改良土壤镉污染的机理及镉的生物有效性研究 [D]. 上海: 华东理工大学, 2016.HUANG J L. Mechanism for remediation of cadmium contaminated soils with red gypsum and bioavailability study of immobilized cadmium[D]. Shanghai: East China University of Science and Technology, 2016.

    Google Scholar

    HUANG J L. Mechanism for remediation of cadmium contaminated soils with red gypsum and bioavailability study of immobilized cadmium[D]. Shanghai: East China University of Science and Technology, 2016.

    Google Scholar

    [40] 邹丽娜, 徐婧婧, 陈铮铮, 等. 水旱轮作下钛石膏对土壤砷铅有效性的影响研究[J]. 农业环境科学学报, 2021, 40(4):774-81.ZOU L N, XU J J, CHEN Z Z, et al. Effect of titanium gypsum on the availability of arsenic and lead in agricultural soil under paddy-dryland rotation conditions[J]. Journal of Agro Environment Science, 2021, 40(4):774-81. doi: 10.11654/jaes.2020-1290

    CrossRef Google Scholar

    ZOU L N, XU J J, CHEN Z Z, et al. Effect of titanium gypsum on the availability of arsenic and lead in agricultural soil under paddy-dryland rotation conditions[J]. Journal of Agro Environment Science, 2021, 40(4):774-81. doi: 10.11654/jaes.2020-1290

    CrossRef Google Scholar

    [41] RODRIGUEZ-JORDA M P, GARRIDO F, GARCIA-GONZALEZ M T. Potential use of gypsum and lime rich industrial by-products for induced reduction of Pb, Zn and Ni leachability in an acid soil[J]. Journal of Hazardous Materials, 2010, 175(1-3):762-9. doi: 10.1016/j.jhazmat.2009.10.074

    CrossRef Google Scholar

    [42] 陈琨, 上官宇先, 杨乾龙, 等. 钛石膏对镉污染土壤水稻生长及镉有效性的影响[J]. 亚热带农业研究, 2020, 16(4):217-23.CHEN K, SHANGGUAN Y X, YANG Q L, et al. Effect of titanium gypsum application on rice growth and cadmium availability in cadmium-contaminated soil[J]. Subtropical Agriculture Research, 2020, 16(4):217-23.

    Google Scholar

    CHEN K, SHANGGUAN Y X, YANG Q L, et al. Effect of titanium gypsum application on rice growth and cadmium availability in cadmium-contaminated soil[J]. Subtropical Agriculture Research, 2020, 16(4):217-23.

    Google Scholar

    [43] 张华军, 李化全. 一种利用固体废弃物钛石膏制备硫酸钙复合肥的方法研究[J]. 山东化工, 2016, 45(13):41-2+5.ZHANG H J, LI H Q. Method for preparing calcium sulfate compound fertilizer by utilizing solid waste titanium gypsum[J]. Shandong Chemical Industry, 2016, 45(13):41-2+5. doi: 10.3969/j.issn.1008-021X.2016.13.014

    CrossRef Google Scholar

    ZHANG H J, LI H Q. Method for preparing calcium sulfate compound fertilizer by utilizing solid waste titanium gypsum[J]. Shandong Chemical Industry, 2016, 45(13):41-2+5. doi: 10.3969/j.issn.1008-021X.2016.13.014

    CrossRef Google Scholar

    [44] 王深, 吕连宏, 张保留, 等. 基于多目标模型的中国低成本碳达峰碳中和路径研究 [J]. 环境科学研究: 1-15.WANG S, LYU L H, ZHANG B L, et al. Multi objective programming model of low-cost path for China’s peaking carbon dioxide emissions and carbon neutrality[J]. Research of Environmental Sciences: 1-15.

    Google Scholar

    WANG S, LYU L H, ZHANG B L, et al. Multi objective programming model of low-cost path for China’s peaking carbon dioxide emissions and carbon neutrality[J]. Research of Environmental Sciences: 1-15.

    Google Scholar

    [45] 包炜军, 李会泉, 张懿. 温室气体CO2矿物碳酸化固定研究进展[J]. 化工学报, 2007(1):1-9.BAO W J, LI H Q, ZHANG Y. Progress in carbon dioxide sequestration by mineral carbonation[J]. Journal of Chemical Industry and Engineering (China), 2007(1):1-9. doi: 10.3321/j.issn:0438-1157.2007.01.001

    CrossRef Google Scholar

    BAO W J, LI H Q, ZHANG Y. Progress in carbon dioxide sequestration by mineral carbonation[J]. Journal of Chemical Industry and Engineering (China), 2007(1):1-9. doi: 10.3321/j.issn:0438-1157.2007.01.001

    CrossRef Google Scholar

    [46] RAHMANI O, JUNIN R, TYRER M, et al. Mineral Carbonation of Red Gypsum for CO2 Sequestration[J]. Energy & Fuels, 2014, 28(9):5953.

    Google Scholar

    [47] PéREZ-MORENO S, GáZQUEZ M, BOLíVAR J. CO2 sequestration by indirect carbonation of artificial gypsum generated in the manufacture of titanium dioxide pigments[J]. Chemical Engineering Journal, 2015, 262:737-46. doi: 10.1016/j.cej.2014.10.023

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(1019) PDF downloads(1203) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint