Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 4
Article Contents

CHEN Tao, JIAN Sheng, XIE Xian, TONG Xiong, ZHANG Ying, LYU Xiangwen. Research Progress of the Separation Technology and Reagents of the Talc-type Molybdenum Ore[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 76-81, 89. doi: 10.3969/j.issn.1000-6532.2024.04.011
Citation: CHEN Tao, JIAN Sheng, XIE Xian, TONG Xiong, ZHANG Ying, LYU Xiangwen. Research Progress of the Separation Technology and Reagents of the Talc-type Molybdenum Ore[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 76-81, 89. doi: 10.3969/j.issn.1000-6532.2024.04.011

Research Progress of the Separation Technology and Reagents of the Talc-type Molybdenum Ore

More Information
  • This is an article in the field of mineral processing engineering. Molybdenum has many good physical and chemical properties and is widely used in many fields. Molybdenum is mainly derived from molybdenite, but the resources of the easily beneficiated molybdenum ore have been gradually reduced after long-term development. Nowadays, talc-type and other refractory molybdenum ores have gradually become the focus of research. The separation of talc and molybdenite is a difficult point in the separation of talc-type molybdenum ores. The two has similar surface structures and natural floatability, and the separation is very difficult. This article summarizes the current research progress of talc-type molybdenum ore beneficiation technology and reagents, and proposes to strengthen the research and development of selective grinding of talc-type molybdenum ores and organic macromolecular reagents, and deepen the mechanism and effect of reagents and mineral surfaces. The study of the raw ore technological mineralogy is an important direction for sorting the talc-type molybdenum ore in the future.

  • 加载中
  • [1] 张汉鑫, 李慧, 梁精龙, 等. 稀有金属钼资源回收现状及进展[J]. 矿产综合利用, 2020(1):47-49.ZHANG H X, LI H, LIANG J L, et al. Status and progress of rare metal molybdenum resource recovery[J]. Multipurpose Utilization of Mineral Resources, 2020(1):47-49. doi: 10.3969/j.issn.1000-6532.2020.01.009

    CrossRef Google Scholar

    ZHANG H X, LI H, LIANG J L, et al. Status and progress of rare metal molybdenum resource recovery[J]. Multipurpose Utilization of Mineral Resources, 2020(1):47-49. doi: 10.3969/j.issn.1000-6532.2020.01.009

    CrossRef Google Scholar

    [2] Anilkumar K R, Parveen A, Badiger G R, et al. Effect of molybdenum trioxide (MoO3) on the electrical conductivity of polyaniline[J]. Physica B Condensed Matter, 2009(12-13):1664-1667.

    Google Scholar

    [3] 杨若瑜, 张建国, 彭远伦, 等. 云南某铜矿铜钼分离浮选工艺优化研究及工业应用[J]. 矿产综合利用, 2021(5):182-185.YANG R Y, ZHANG J G, PENG Y L, et al. Optimization research and industrial application of copper and molybdenum separation flotation process in a copper mine in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2021(5):182-185. doi: 10.3969/j.issn.1000-6532.2021.05.030

    CrossRef Google Scholar

    YANG R Y, ZHANG J G, PENG Y L, et al. Optimization research and industrial application of copper and molybdenum separation flotation process in a copper mine in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2021(5):182-185. doi: 10.3969/j.issn.1000-6532.2021.05.030

    CrossRef Google Scholar

    [4] 王国彬, 蓝卓越, 赵清平, 等. 钼尾矿中有价金属的综合回收研究现状[J]. 矿产综合利用, 2021(3):140-148.WANG G B, LAN Z Y, ZHAO Q P, et al. Research status of comprehensive recovery of valuable metals in molybdenum tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(3):140-148.

    Google Scholar

    WANG G B, LAN Z Y, ZHAO Q P, et al. Research status of comprehensive recovery of valuable metals in molybdenum tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(3):140-148.

    Google Scholar

    [5] 张成强, 李洪潮, 张颖新, 等. 我国复杂难选钼矿资源选矿技术进展[J]. 中国矿业, 2009(10):64-66,86.ZHANG C Q, LI H C, ZHANG Y X, et al. Progress in the beneficiation technology of complex refractory molybdenum ore resources in my country[J]. China Mining Industry, 2009(10):64-66,86. doi: 10.3969/j.issn.1004-4051.2009.10.021

    CrossRef Google Scholar

    ZHANG C Q, LI H C, ZHANG Y X, et al. Progress in the beneficiation technology of complex refractory molybdenum ore resources in my country[J]. China Mining Industry, 2009(10):64-66,86. doi: 10.3969/j.issn.1004-4051.2009.10.021

    CrossRef Google Scholar

    [6] 张亮, 杨卉芃, 冯安生. 全球钼矿资源现状及市场分析[J]. 矿产综合利用, 2019(3):11-16.ZHANG L, YANG H P, FENG A S. Study on general situation and analysis of supply and demand of global molybdenum resource[J]. Multipurpose Utilization of Mineral Resources, 2019(3):11-16. doi: 10.3969/j.issn.1000-6532.2019.03.003

    CrossRef Google Scholar

    ZHANG L, YANG H P, FENG A S. Study on general situation and analysis of supply and demand of global molybdenum resource[J]. Multipurpose Utilization of Mineral Resources, 2019(3):11-16. doi: 10.3969/j.issn.1000-6532.2019.03.003

    CrossRef Google Scholar

    [7] 黄凡, 王登红, 陈毓川, 等. 中国钼矿中辉钼矿的稀土元素地球化学及其应用[J]. 中国地质, 2013(1):287-301.HUANG F, WANG D H, CHEN Y C, et al. Rare earth element geochemistry and application of molybdenite in Chinese molybdenum deposits[J]. Chinese Geology, 2013(1):287-301. doi: 10.3969/j.issn.1000-3657.2013.01.019

    CrossRef Google Scholar

    HUANG F, WANG D H, CHEN Y C, et al. Rare earth element geochemistry and application of molybdenite in Chinese molybdenum deposits[J]. Chinese Geology, 2013(1):287-301. doi: 10.3969/j.issn.1000-3657.2013.01.019

    CrossRef Google Scholar

    [8] 陈建华, 冯其明. 钼矿的选矿现状[J]. 矿产保护与利用, 1994(6):26-28.CHEN J H, FENG Q M. Current status of molybdenum ore beneficiation[J]. Mineral Resources Conservation and Utilization, 1994(6):26-28.

    Google Scholar

    CHEN J H, FENG Q M. Current status of molybdenum ore beneficiation[J]. Mineral Resources Conservation and Utilization, 1994(6):26-28.

    Google Scholar

    [9] 魏桢伦, 李育彪. 辉钼矿晶面各向异性及其对浮选的影响机制[J]. 矿产保护与利用, 2018(3):31-36.WEI Z L, LI Y B. The crystal plane anisotropy of molybdenite and its influence mechanism on flotation[J]. Mineral Resources Conservation and Utilization, 2018(3):31-36.

    Google Scholar

    WEI Z L, LI Y B. The crystal plane anisotropy of molybdenite and its influence mechanism on flotation[J]. Mineral Resources Conservation and Utilization, 2018(3):31-36.

    Google Scholar

    [10] 刘佳, 李解, 李保卫, 等. 伊春辉钼矿浮选工艺优化试验研究[J]. 矿产综合利用, 2017(6):50-56.LIU J, LI J, LI B W, et al. Experimental study on optimization of flotation process of Yichun molybdenite[J]. Multipurpose Utilization of Mineral Resources, 2017(6):50-56. doi: 10.3969/j.issn.1000-6532.2017.06.011

    CrossRef Google Scholar

    LIU J, LI J, LI B W, et al. Experimental study on optimization of flotation process of Yichun molybdenite[J]. Multipurpose Utilization of Mineral Resources, 2017(6):50-56. doi: 10.3969/j.issn.1000-6532.2017.06.011

    CrossRef Google Scholar

    [11] Smit F J, Bhasin A K. Relationship of petroleum hydrocarbon characteristics and molybdenite flotation[J]. International Journal of Mineral Processing, 1985(1-2):19-40.

    Google Scholar

    [12] 赵玉卿, 黄秉雄, 刘磊, 等. 蛇纹石, 绿泥石, 滑石的可浮性及抑制方法综述[J]. 矿产综合利用, 2018(2):7-11.ZHAO Y Q, HUANG B X, LIU L, et al. Overview of the floatability and inhibition methods of serpentine, chlorite and talc[J]. Multipurpose Utilization of Mineral Resources, 2018(2):7-11. doi: 10.3969/j.issn.1000-6532.2018.02.002

    CrossRef Google Scholar

    ZHAO Y Q, HUANG B X, LIU L, et al. Overview of the floatability and inhibition methods of serpentine, chlorite and talc[J]. Multipurpose Utilization of Mineral Resources, 2018(2):7-11. doi: 10.3969/j.issn.1000-6532.2018.02.002

    CrossRef Google Scholar

    [13] Beattie D A, Le H, Kaggwa G B, et al. Influence of adsorbed polysaccharides and polyacrylamides on talc flotation[J]. International Journal of Mineral Processing, 2006(4):238-249.

    Google Scholar

    [14] Beattie D A, Le H, Kaggwa G B, et al. The effect of polysaccharides and polyacrylamides on the depression of talc and the flotation of sulphide minerals[J]. Minerals Engineering, 2006(6-8):598-608.

    Google Scholar

    [15] Rosenholtz J L, Smith D T. The dielectric constant of mineral powders[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1936(2):115-120.

    Google Scholar

    [16] Mathieu G I, RW B. Getting the talc out of molybdenite ores[J]. 1974(6): 75-77.

    Google Scholar

    [17] Yuan D, Cadien K, Liu Q, et al. Separation of talc and molybdenite: challenges and opportunities[J]. Minerals Engineering, 2019, 143:105923. doi: 10.1016/j.mineng.2019.105923

    CrossRef Google Scholar

    [18] Jiang X K, Ban H, Neathery J K, et al. New approach for removing talc for upgrading molybdenite ores[C]//1999 SME Annual Meeting: Mining in a New Era. 1999: 126.

    Google Scholar

    [19] 彭团儿, 郭珍旭, 张艳娇. 斜板分级机在某难选滑石型钼矿的应用研究[J]. 矿产保护与利用, 2013(3):31-34.PENG T E, GUO Z X, ZHANG Y J. Application of inclined plate classifier in a refractory talc-type molybdenum mine[J]. Mineral Resources Conservation and Utilization, 2013(3):31-34. doi: 10.3969/j.issn.1001-0076.2013.03.008

    CrossRef Google Scholar

    PENG T E, GUO Z X, ZHANG Y J. Application of inclined plate classifier in a refractory talc-type molybdenum mine[J]. Mineral Resources Conservation and Utilization, 2013(3):31-34. doi: 10.3969/j.issn.1001-0076.2013.03.008

    CrossRef Google Scholar

    [20] 赵平. 栾川滑石型辉钼矿选矿新工艺、新药剂工业试验[A]. 中国地质科学院“九五”科技成果汇编[C]. 中国地质学会, 2001: 1.ZHAO P. Luanchuan talc-type molybdenite beneficiation new technology and new chemical industrial test[A]. Compilation of scientific and technological achievements of the Chinese Academy of Geological Sciences during the Ninth Five-Year Plan period[C]. Chinese Geological Society, 2001: 1.

    Google Scholar

    ZHAO P. Luanchuan talc-type molybdenite beneficiation new technology and new chemical industrial test[A]. Compilation of scientific and technological achievements of the Chinese Academy of Geological Sciences during the Ninth Five-Year Plan period[C]. Chinese Geological Society, 2001: 1.

    Google Scholar

    [21] 张小云, 黎铉海. 辉钼矿与滑石的分选试验[J]. 湖南有色金属, 1997(1):15-16.ZHANG X Y, LI X H. Separation test of molybdenite and talc[J]. Hunan Nonferrous Metals, 1997(1):15-16.

    Google Scholar

    ZHANG X Y, LI X H. Separation test of molybdenite and talc[J]. Hunan Nonferrous Metals, 1997(1):15-16.

    Google Scholar

    [22] 董燧珍. 含滑石钼矿的选别工艺试验研究[J]. 矿产综合利用, 2006(1):7-12.DONG S Z. Experimental study on the separation technology of talc-bearing molybdenum ore[J]. Multipurpose Utilization of Mineral Resources, 2006(1):7-12. doi: 10.3969/j.issn.1000-6532.2006.01.002

    CrossRef Google Scholar

    DONG S Z. Experimental study on the separation technology of talc-bearing molybdenum ore[J]. Multipurpose Utilization of Mineral Resources, 2006(1):7-12. doi: 10.3969/j.issn.1000-6532.2006.01.002

    CrossRef Google Scholar

    [23] 张文钲. 钼选矿学技术发展现状与展望[J]. 中国钼业, 2011(1):1-6.ZHANG W Z. The status quo and prospects of the development of molybdenum beneficiation technology[J]. China Molybdenum Industry, 2011(1):1-6. doi: 10.3969/j.issn.1006-2602.2011.01.001

    CrossRef Google Scholar

    ZHANG W Z. The status quo and prospects of the development of molybdenum beneficiation technology[J]. China Molybdenum Industry, 2011(1):1-6. doi: 10.3969/j.issn.1006-2602.2011.01.001

    CrossRef Google Scholar

    [24] 俞国庆, 姚云芳. 肯尼柯特犹他铜矿铜-钼选矿厂[J]. 中国钼业, 1998(4):95-98.YU G Q, YAO Y F. Kennecott utah copper mine copper-molybdenum concentrator[J]. China Molybdenum Industry, 1998(4):95-98.

    Google Scholar

    YU G Q, YAO Y F. Kennecott utah copper mine copper-molybdenum concentrator[J]. China Molybdenum Industry, 1998(4):95-98.

    Google Scholar

    [25] 孙大勇, 祁忠旭, 肖舜元, 等. 高滑石型难选钼矿选矿进展[J]. 现代矿业, 2019(3):114-117.SUN D Y, QI Z X, XIAO S Y, et al. Progress in beneficiation of high-talc refractory molybdenum ore[J]. Modern Mining, 2019(3):114-117. doi: 10.3969/j.issn.1674-6082.2019.03.032

    CrossRef Google Scholar

    SUN D Y, QI Z X, XIAO S Y, et al. Progress in beneficiation of high-talc refractory molybdenum ore[J]. Modern Mining, 2019(3):114-117. doi: 10.3969/j.issn.1674-6082.2019.03.032

    CrossRef Google Scholar

    [26] Tang X, Chen Y, Liu K, et al. Reverse flotation separation of talc from molybdenite without addition of depressant: Effect of surface oxidation by thermal pre-treatment[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, 594:124671. doi: 10.1016/j.colsurfa.2020.124671

    CrossRef Google Scholar

    [27] Huch R O, Valles P. Talc-molybdenite separation[J]. US, 1975.

    Google Scholar

    [28] Qin, Wenqing, Ma, et al. Depression mechanism of the zinc sulfate and sodium carbonate combined inhibitor on talc[J]. Colloids and Surfaces, A. Physicochemical and Engineering Aspects, 2016, 501:92-97. doi: 10.1016/j.colsurfa.2016.04.057

    CrossRef Google Scholar

    [29] 马晶, 张文钲, 李枢本. 钼矿选矿[M]. 冶金工业出版社, 2008.MA J, ZHANG W Z, LI S B. Beneficiation of molybdenum ore[M]. Metallurgical Industry Press, 2008.

    Google Scholar

    MA J, ZHANG W Z, LI S B. Beneficiation of molybdenum ore[M]. Metallurgical Industry Press, 2008.

    Google Scholar

    [30] Kelebek S, Yoruk S, Smith G W. Wetting behavior of molybdenite and talc in lignosulphonate/mibc solutions and their separation by flotation[J]. Separation Science & Technology, 2001(2):145-157.

    Google Scholar

    [31] Ma X, Pawlik M. The effect of lignosulfonates on the floatability of talc[J]. International Journal of Mineral Processing, 2007(1-2):19-27.

    Google Scholar

    [32] Fu Y, Zhu Z, Jin Y, et al. Improved depression of talc in chalcopyrite flotation using a novel depressant combination of calcium ions and sodium lignosulfonate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558:88-94.

    Google Scholar

    [33] Khraisheh M, Holland C, Creany C, et al. Effect of molecular weight and concentration on the adsorption of CMC onto talc at different ionic strengths[J]. International Journal of Mineral Processing, 2005, 75(3-4):197-206. doi: 10.1016/j.minpro.2004.08.012

    CrossRef Google Scholar

    [34] Krizova H, Wiener J, Development of carboxymethyl cellulose/ polyphenols gels for textile applications[J]. Autex Research Journal, 2013(2): 33-36.

    Google Scholar

    [35] 齐超, 欧乐明, 邱章伟, 等. 不同种CMC对两种非极性矿物表面的抑制研究[J]. 有色金属科学与工程, 2015(6):88-94.QI C, OU L M, QIU Z W, et al. Study on the inhibition of different kinds of CMC on the surface of two non-polar minerals[J]. Nonferrous Metal Science and Engineering, 2015(6):88-94.

    Google Scholar

    QI C, OU L M, QIU Z W, et al. Study on the inhibition of different kinds of CMC on the surface of two non-polar minerals[J]. Nonferrous Metal Science and Engineering, 2015(6):88-94.

    Google Scholar

    [36] KUHN M C. Mthods for the recovery of molybdenum, US200800667112A1[P]. 2008-9-10.

    Google Scholar

    [37] 龙良俊. 污泥腐殖酸特性及其改性后对重金属的吸附研究[D]. 重庆: 重庆大学, 2018.LONG L J. Humic acid characteristics of sludge and its adsorption of heavy metals after modification[D]. Chongqing: Chongqing University, 2018.

    Google Scholar

    LONG L J. Humic acid characteristics of sludge and its adsorption of heavy metals after modification[D]. Chongqing: Chongqing University, 2018.

    Google Scholar

    [38] 陆宝树. 腐殖质化学-发生, 组成, 反应[J]. 土壤学进展, 1985(1):56.LU B S. Humus Chemistry-Generation, Composition, Reaction[J]. Progress in Soil Science, 1985(1):56.

    Google Scholar

    LU B S. Humus Chemistry-Generation, Composition, Reaction[J]. Progress in Soil Science, 1985(1):56.

    Google Scholar

    [39] YUAN D, XIE L, SHI X, et al. Selective flotation separation of molybdenite and talc by humic substances[J]. Minerals Engineering, 2017, 117:34-41.

    Google Scholar

    [40] J·王, 罗科华, 王荣生, 等. 古尔胶在固-液界面上的吸附机理[J]. 国外金属矿选矿, 2006(4):30-33.WANG J, LUO K H, WANG R S, et al. Adsorption mechanism of Gu'er gum at the solid-liquid interface[J]. Foreign Metallic Mineral Processing, 2006(4):30-33.

    Google Scholar

    WANG J, LUO K H, WANG R S, et al. Adsorption mechanism of Gu'er gum at the solid-liquid interface[J]. Foreign Metallic Mineral Processing, 2006(4):30-33.

    Google Scholar

    [41] P·G·肖特里奇, 向平, 肖力子. 多糖抑制剂的化学成份和分子量对滑石浮选的影响[J]. 国外金属矿选矿, 2002(8):29-32+22.P·G·Shortridge, XIANG P, XIAO L Z. The influence of the chemical composition and molecular weight of polysaccharide inhibitors on the flotation of talc[J]. Foreign Metallic Mineral Processing, 2002(8):29-32+22.

    Google Scholar

    P·G·Shortridge, XIANG P, XIAO L Z. The influence of the chemical composition and molecular weight of polysaccharide inhibitors on the flotation of talc[J]. Foreign Metallic Mineral Processing, 2002(8):29-32+22.

    Google Scholar

    [42] 潘高产, 卢毅屏. CMC和古尔胶对滑石浮选的抑制作用研究[J]. 有色金属(选矿部分), 2013(2):74-78.PAN G C, LU Y P. Study on the inhibition of CMC and Gu'er gum on the flotation of talc[J]. Non-Ferrous Metals (Mineral Processing Part), 2013(2):74-78.

    Google Scholar

    PAN G C, LU Y P. Study on the inhibition of CMC and Gu'er gum on the flotation of talc[J]. Non-Ferrous Metals (Mineral Processing Part), 2013(2):74-78.

    Google Scholar

    [43] 宋少云, 廖威. 葡聚糖的研究进展[J]. 中山大学学报(自然科学版), 2005(A2):229-232.SONG S Y, LIAO W. Research progress of dextran[J]. Journal of Sun Yat-sen University (Natural Science Edition), 2005(A2):229-232. doi: 10.3321/j.issn:0529-6579.2005.z2.053

    CrossRef Google Scholar

    SONG S Y, LIAO W. Research progress of dextran[J]. Journal of Sun Yat-sen University (Natural Science Edition), 2005(A2):229-232. doi: 10.3321/j.issn:0529-6579.2005.z2.053

    CrossRef Google Scholar

    [44] 张其东, 袁致涛, 刘炯天, 等. 葡聚糖对辉钼矿与滑石浮选分离的影响[J]. 中国有色金属学报, 2016(4):884-890.ZHANG Q D, YUAN Z T, LIU J T, et al. The effect of dextran on the flotation separation of molybdenite and talc[J]. The Chinese Journal of Nonferrous Metals, 2016(4):884-890.

    Google Scholar

    ZHANG Q D, YUAN Z T, LIU J T, et al. The effect of dextran on the flotation separation of molybdenite and talc[J]. The Chinese Journal of Nonferrous Metals, 2016(4):884-890.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(534) PDF downloads(384) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint