Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 3
Article Contents

OUYANG Xia, SHI Sufeng. Research on Environmental Remediation of Uranium Mines in Southern China: A Review[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 102-111. doi: 10.3969/j.issn.1000-6532.2024.03.017
Citation: OUYANG Xia, SHI Sufeng. Research on Environmental Remediation of Uranium Mines in Southern China: A Review[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 102-111. doi: 10.3969/j.issn.1000-6532.2024.03.017

Research on Environmental Remediation of Uranium Mines in Southern China: A Review

  • This is an article in the field of mining environment. Most of the uranium mines discovered and mined in my country are located in Hunan, Jiangxi, and Guangdong. With the delineation of the ecological red line and the increasing attention of the people to ecological and environmental issues, environmental restoration of uranium mines becomes more and more important. This article briefly introduces the mining methods of uranium mines in southern China, systematically analyzes the impact of the production process of uranium mines on the environment, focuses on the principles and applications of physical, chemical, and biological remediation measures, summarizes the corresponding advantages and disadvantages, and prospects the future development of mine restoration. It was pointed out that the next step should be focused on environmental testing before the decommissioning of uranium mines and related facilities, and comprehensive environmental data collection and recording of the entire production process of the mine. Close attention should be paid to the treatment and disposal of wastewater from uranium mines, increase research investment, learn from foreign advanced technology and methods, and use comprehensive repair technology to repair the polluted environment more efficiently, safely and quickly. The restoration of uranium mines would be combined with rural governance, develop tourism, and increase the development motivation and income levels of local residents.

  • 加载中
  • [1] CHEN S, XING W, DU X. Forecast of the demand and supply plan of China’s uranium resources till 2030[J]. International Journal of Green Energy, 2017, 14(7):638-649. doi: 10.1080/15435075.2017.1313741

    CrossRef Google Scholar

    [2] 郑伟. 铀矿山露天采场废墟对环境的影响及退役治理技术探讨[J]. 铀矿冶, 2003, 22(4):183-187.ZHENG W. Discussion on environmental impact and decommissioning disposal techniques of opencast stope ruins at uranium mines[J]. Uranium Mining and Metallurgy, 2003, 22(4):183-187.

    Google Scholar

    ZHENG W. Discussion on environmental impact and decommissioning disposal techniques of opencast stope ruins at uranium mines[J]. Uranium Mining and Metallurgy, 2003, 22(4):183-187.

    Google Scholar

    [3] 张展适, 李满根, 杨亚新. 赣、粤、湘地区部分硬岩型铀矿山辐射环境污染及治理现状[J]. 铀矿冶, 2007, 26(4):191-196.ZHANG Z S, LI M G, YANG Y X. Radiation contamination andtreatment of some hard-rock-type uranium mines in Gan, Yue and Xiang areas[J]. Uranium Mining and Metallurgy, 2007, 26(4):191-196.

    Google Scholar

    ZHANG Z S, LI M G, YANG Y X. Radiation contamination andtreatment of some hard-rock-type uranium mines in Gan, Yue and Xiang areas[J]. Uranium Mining and Metallurgy, 2007, 26(4):191-196.

    Google Scholar

    [4] 张骞, 夏彧, 伍皓, 等. 云南煤系铀资源潜力分析与典型矿床铀赋存状态研究[J]. 矿产综合利用, 2021(5): 106-112.ZHANG Q, XIA Y, WU H, et al. Potential analysis of uranium resources in coal measures and study on uranium occurrences of typical ore deposits in Yunnan Province[J]. Multipurpose Utilization of Mineral Resources, 2021

    Google Scholar

    ZHANG Q, XIA Y, WU H, et al. Potential analysis of uranium resources in coal measures and study on uranium occurrences of typical ore deposits in Yunnan Province[J]. Multipurpose Utilization of Mineral Resources, 2021

    Google Scholar

    [5] ZHOU Z, YANG Z, SUN Z, et al. Multidimensional pollution and potential ecological and health risk assessments of radionuclides and metals in the surface soils of a uranium mine in East China[J]. Journal of Soils and Sediments, 2020, 20(2):775-791. doi: 10.1007/s11368-019-02428-x

    CrossRef Google Scholar

    [6] GUETTAF H, BECIS A, FERHAT K, et al. Concentration–purification of uranium from an acid leaching solution[J]. Physics Procedia, 2009, 2(3):765-771. doi: 10.1016/j.phpro.2009.11.023

    CrossRef Google Scholar

    [7] BHARGAVA S K, RAM R, POWNCEBY M, et al. A review of acid leaching of uraninite[J]. Hydrometallurgy, 2015, 151:10-24. doi: 10.1016/j.hydromet.2014.10.015

    CrossRef Google Scholar

    [8] LOTTERING M J, LORENZEN L, PHALA N S, et al. Mineralogy and uranium leaching response of low grade South African ores[J]. Minerals Engineering, 2008, 21(1):16-22. doi: 10.1016/j.mineng.2007.06.006

    CrossRef Google Scholar

    [9] 王廷健, 韩俊磊. 铀矿开采技术综述与展望[J]. 江西化工, 2019(4):1-4.WANG T J, HAN J L. Review and prospect of uranium mining technology[J]. Jiangxi Chemical Industry, 2019(4):1-4.

    Google Scholar

    WANG T J, HAN J L. Review and prospect of uranium mining technology[J]. Jiangxi Chemical Industry, 2019(4):1-4.

    Google Scholar

    [10] FARJANA S H, HUDA N, MAHMUD M A P, et al. Comparative life-cycle assessment of uranium extraction processes[J]. Journal of Cleaner Production, 2018, 202:666-683. doi: 10.1016/j.jclepro.2018.08.105

    CrossRef Google Scholar

    [11] SREENIVAS T, RAJAN K C. Studies on the separation of dissolved uranium from alkaline carbonate leach slurries by resin-in-pulp process[J]. Separation and Purification Technology, 2013, 112:54-60. doi: 10.1016/j.seppur.2013.03.050

    CrossRef Google Scholar

    [12] QUINN J E, SEDGER D S, BRENNAN A T, et al. Recovery of uranium from carbonate solutions using Lewatit TP 107 resin[J]. Hydrometallurgy, 2020, 194:105360. doi: 10.1016/j.hydromet.2020.105360

    CrossRef Google Scholar

    [13] VANCE R. Uranium 2014: resources, production and demand[J]. NEA News, 2014, 32(1/2):26.

    Google Scholar

    [14] SINHAR R K, KAKODKAR A. Design and development of the AHWR—the Indian thorium fuelled innovative nuclear reactor[J]. Nuclear Engineering and Design, 2006, 236(7-8):683-700. doi: 10.1016/j.nucengdes.2005.09.026

    CrossRef Google Scholar

    [15] SREENIVAS T, CHAKRAVARTTY J K. Alkaline processing of uranium ores of Indian origin[J]. Transactions of the Indian Institute of Metals, 2016, 69(1):3-14. doi: 10.1007/s12666-015-0548-2

    CrossRef Google Scholar

    [16] HERRIOTT T M, CROELEY J L, SCHMITZ M D, et al. Exploring the law of detrital zircon: LA-ICP-MS and CA-TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA[J]. Geology, 2019, 47(11):1044-1048. doi: 10.1130/G46312.1

    CrossRef Google Scholar

    [17] WRONKIEWICZ D J, BUCK E C. Uranium mineralogy and the geologic disposal of spent nuclear fuel[J]. Uranium, 2018, 10:475-498.

    Google Scholar

    [18] SUZUKI Y, SUKO T. Geomicrobiological factors that control uranium mobility in the environment: Update on recent advances in the bioremediation of uranium-contaminated sites[J]. Journal of Mineralogical and Petrological Sciences, 2006: 0611210003-0611210003.

    Google Scholar

    [19] BARGAR J R, WIALIAMS K H, CAMPBELL K M, et al. Uranium redox transition pathways in acetate-amended sediments[J]. Proceedings of the National Academy of Sciences, 2013, 110(12):4506-4511. doi: 10.1073/pnas.1219198110

    CrossRef Google Scholar

    [20] ABDEL-SABOUR M F. Remediation and bioremediation of uranium contaminated soils[J]. Electronic Journal of Environmental, Agricultural and Food Chemistry, 2007, 6:2009-2023.

    Google Scholar

    [21] KHAN F I, HUSAIN T, HEJAZI R. An overview and analysis of site remediation technologies[J]. Journal of Environmental Management, 2004, 71(2):95-122.

    Google Scholar

    [22] GAVRILESCU M, PAVEL L V, CRETESCU I. Characterization and remediation of soils contaminated with uranium[J]. Journal of Hazardous Materials, 2009, 163(2-3):475-510. doi: 10.1016/j.jhazmat.2008.07.103

    CrossRef Google Scholar

    [23] Lottermoser B G, Ashley P M. Physical dispersion of radioactive mine waste at the rehabilitated Radium Hill uranium mine site, South Australia[J]. Australian Journal of Earth Sciences, 2006, 53(3):485-499. doi: 10.1080/08120090600632383

    CrossRef Google Scholar

    [24] Lottermoser B, Ashley P. Assessment of rehabilitated uranium mine sites, Australia[M]//Uranium, Mining and Hydrogeology. Springer, Berlin, Heidelberg, 2008: 335-340.

    Google Scholar

    [25] 潘英杰, 李玉成, 薛建新, 等. 我国铀矿冶设施退役治理现状及对策[J]. 辐射防护, 2009, 29(3):167-171+198.PAN Y J, LI Y C, XUE J X, et al. Status and countermeasures for decommissioning of uranium mine and mill facilities in china[J]. Radiation Protection, 2009, 29(3):167-171+198.

    Google Scholar

    PAN Y J, LI Y C, XUE J X, et al. Status and countermeasures for decommissioning of uranium mine and mill facilities in china[J]. Radiation Protection, 2009, 29(3):167-171+198.

    Google Scholar

    [26] CAMPBELL K M, GALLEGOS T J, LANDA E R. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation[J]. Applied Geochemistry, 2015, 57:206-235. doi: 10.1016/j.apgeochem.2014.07.022

    CrossRef Google Scholar

    [27] Waggitt P W. Uranium mine rehabilitation: the story of the South Alligator Valley intervention[J]. Journal of Environmental Radioactivity, 2004, 76(1-2):51-66. doi: 10.1016/j.jenvrad.2004.03.018

    CrossRef Google Scholar

    [28] ZHOU P, GU B. Extraction of oxidized and reduced forms of uranium from contaminated soils: Effects of carbonate concentration and pH[J]. Environmental Science & Technology, 2005, 39(12):4435-4440.

    Google Scholar

    [29] CHOU K C. Application of phenomenological theory to chemical metallurgy[J]. ISIJ International, 2018, 58(5):785-791. doi: 10.2355/isijinternational.ISIJINT-2018-120

    CrossRef Google Scholar

    [30] LLOYD J R, LOVLEY D R. Microbial detoxification of metals and radionuclides[J]. Current Opinion in Biotechnology, 2001, 12(3):248-253. doi: 10.1016/S0958-1669(00)00207-X

    CrossRef Google Scholar

    [31] MASON C F V, LU N, TURNEY W R J R, et al. A complete remediation system for uranium-contaminated soils: application to a uranium-contaminated site at Los Alamos National Laboratory[J]. Remediation Journal, 1998, 8(3):113-126. doi: 10.1002/rem.3440080310

    CrossRef Google Scholar

    [32] KHALID S, SHAHID M, NIAZI N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 2017, 182:247-268. doi: 10.1016/j.gexplo.2016.11.021

    CrossRef Google Scholar

    [33] KULPA J P, HUGHES J E. Deployment of chemical extraction soil treatment on uranium contaminated soil[J]. WM, 2001, 1:54-5.

    Google Scholar

    [34] MASON C F V, TURNEY W, Thomson B M, et al. Carbonate leaching of uranium from contaminated soils[J]. Environmental Science & Technology, 1997, 31(10):2707-2711.

    Google Scholar

    [35] PHILLIPS E J P, LANDA E R, LOVLEY D R. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U (VI) reduction[J]. Journal of Industrial Microbiology and Biotechnology, 1995, 14(3-4):203-207. doi: 10.1007/BF01569928

    CrossRef Google Scholar

    [36] FRANCIS A J, DODGE C J. Remediation of soils and wastes contaminated with uranium and toxic metals[J]. Environmental Science & Technology, 1998, 32(24):3993-3998.

    Google Scholar

    [37] NIRDOSH I. Leaching of uranium and 226ra from low‐level radioactive waste from port hope, ontario[J]. The Canadian Journal of Chemical Engineering, 1999, 77(3):508-514. doi: 10.1002/cjce.5450770311

    CrossRef Google Scholar

    [38] WALL J D, KRUMHOLZ L R. Uranium reduction[J]. Annu. Rev. Microbiol., 2006, 60:149-166. doi: 10.1146/annurev.micro.59.030804.121357

    CrossRef Google Scholar

    [39] BERTSCH P M, HUNTER D B, SUTTON S R, et al. In situ chemical speciation of uranium in soils and sediments by micro X-ray absorption spectroscopy[J]. Environmental Science & Technology, 1994, 28(5):980-984.

    Google Scholar

    [40] BOONSTRA J, BUISMAN C J N. Biotechnology for sustainable hydrometallurgy[J]. Hydrometallurgy, 2003, 2:1105-1119.

    Google Scholar

    [41] WAN J, TOKUNAGA T K, KIM Y, et al. Effects of organic carbon supply rates on uranium mobility in a previously bioreduced contaminated sediment[J]. Environmental Science & Technology, 2008, 42(20):7573-7579.

    Google Scholar

    [42] IKEDA A, HENNIG C, TSUSHIMA S, et al. Comparative study of uranyl (VI) and-(V) carbonato complexes in an aqueous solution[J]. Inorganic Chemistry, 2007, 46(10):4212-4219. doi: 10.1021/ic070051y

    CrossRef Google Scholar

    [43] MA L Q, KOMAR K M, TU C, et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409(6820):579-579. doi: 10.1038/35054664

    CrossRef Google Scholar

    [44] KRAMER U, COTTER-HOWELLS J D, CHARNOCK J M, et al. Free histidine as a metal chelator in plants that accumulate nickel[J]. Nature, 1996, 379(6566):635-638. doi: 10.1038/379635a0

    CrossRef Google Scholar

    [45] YE H B, YE X, et al. Growth response and metal accumulation of Sedum alfredii to Cd/Zn complex-polluted ion levels[J]. Journal of Integrative Plant Biology, 2003, 45(9):1030-1036.

    Google Scholar

    [46] SELVAKUMARK R, RAMADOSS G, MENON M P, et al. Challenges and complexities in remediation of uranium contaminated soils: A review[J]. Journal of Environmental Radioactivity, 2018, 192:592-603. doi: 10.1016/j.jenvrad.2018.02.018

    CrossRef Google Scholar

    [47] FINNERANR K T, ANDERSON R T, NEVIN K P, et al. Potential for bioremediation of uranium-contaminated aquifers with microbial U (VI) reduction[J]. Soil and Sediment Contamination: An International Journal, 2002, 11(3):339-357. doi: 10.1080/20025891106781

    CrossRef Google Scholar

    [48] WU W M, CARLEY J, LUO J, et al. In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen[J]. Environmental Science & Technology, 2007, 41(16):5716-5723.

    Google Scholar

    [49] DING F, CHEN H, ZHANG S, et al. Effect of chelating agents on Reactive Green 19 decolorization through Fe0-activated persulfate oxidation process[J]. Journal of Environmental Management, 2017, 200:325-334. doi: 10.1016/j.jenvman.2017.05.089

    CrossRef Google Scholar

    [50] 鲁雪梅, 周艳欣. 螯合剂在土壤重金属污染修复中的应用研究[J]. 低碳世界, 2017(22):35-36.LU X M, ZHOU Y X. Application of chelating agents in remediation of soil heavy metal pollution[J]. Low Carbon world, 2017(22):35-36. doi: 10.3969/j.issn.2095-2066.2017.22.023

    CrossRef Google Scholar

    LU X M, ZHOU Y X. Application of chelating agents in remediation of soil heavy metal pollution[J]. Low Carbon world, 2017(22):35-36. doi: 10.3969/j.issn.2095-2066.2017.22.023

    CrossRef Google Scholar

    [51] 黄德娟, 朱业安, 余月. 铀污染环境治理中的植物修复研究[J]. 铀矿冶, 202, 31(4): 202-206.HUANG D J, ZHU Y A, YU Y, et al. Study on phytoremediation in the uranium contaminated environment[J]. Uranium Mining and Metallurgy, 202, 31(4): 202-206.

    Google Scholar

    HUANG D J, ZHU Y A, YU Y, et al. Study on phytoremediation in the uranium contaminated environment[J]. Uranium Mining and Metallurgy, 202, 31(4): 202-206.

    Google Scholar

    [52] 唐秀欢, 潘孝兵, 万俊生. 放射性污染植物修复技术田间试验及前景分析[J]. 环境科学与技术, 2008, 31(4):63-67.TANG X H, PAN X B, WAN J S. Field experiments of radiophytoremediation and its application prospct[J]. Environmental Science & Technology, 2008, 31(4):63-67. doi: 10.3969/j.issn.1003-6504.2008.04.018

    CrossRef Google Scholar

    TANG X H, PAN X B, WAN J S. Field experiments of radiophytoremediation and its application prospct[J]. Environmental Science & Technology, 2008, 31(4):63-67. doi: 10.3969/j.issn.1003-6504.2008.04.018

    CrossRef Google Scholar

    [53] DUSHENKOV S, VASUDEV D, KAPULNIKN Y, et al. Removal of uranium from water using terrestrial plants[J]. Environmental Science & Technology, 1997, 31(12):3468-3474.

    Google Scholar

    [54] LI J, ZHANG Y. Remediation technology for the uranium contaminated environment: a review[J]. Procedia Environmental Sciences, 2012, 13:1609-1615. doi: 10.1016/j.proenv.2012.01.153

    CrossRef Google Scholar

    [55] SHARMA S, SINGH B, MANCHANDA V K. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water[J]. Environmental Science and Pollution Research, 2015, 22(2):946-962. doi: 10.1007/s11356-014-3635-8

    CrossRef Google Scholar

    [56] Hu Y, Yu Z, Fang X, et al. Influence of mining and vegetation restoration on soil properties in the eastern margin of the Qinghai-Tibet Plateau[J]. International Journal of Environmental Research and Public Health, 2020, 17(12):4288. doi: 10.3390/ijerph17124288

    CrossRef Google Scholar

    [57] 周书葵, 田林玉, 荣丽杉, 等. 3种固定剂联合修复铀尾矿污染土壤[J]. 精细化工, 2020, 37(10):2105-2111.ZHOU S K, TIAN L Y, RONG L S, et al. Remediation of uranium contaminated soil with three combinated[J]. Fine Chemicals, 2020, 37(10):2105-2111.

    Google Scholar

    ZHOU S K, TIAN L Y, RONG L S, et al. Remediation of uranium contaminated soil with three combinated[J]. Fine Chemicals, 2020, 37(10):2105-2111.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(5)

Article Metrics

Article views(1074) PDF downloads(49) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint