Citation: | LAN Chenchen, GAO Yanjia, LYU Qing, ZHANG Zhenfeng, GAO Feng, ZHANG Shuhui. Development Status and Prospect of Smelting Reduction Ironmaking Technology in China[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 96-101. doi: 10.3969/j.issn.1000-6532.2024.03.016 |
This is an article in the field of metallurgical engineering. With the increasing attention of iron and steel enterprises to pollutant emission, non blast furnace ironmaking process has gradually become a hot issue. At present, the industrialized non blast furnace ironmaking technology in China is mainly Corex process of Baogang and HIsmelt process of Shandong Molong. It is also a hot process of non blast furnace ironmaking technology in China. This article expounds the processes of Corex process and HIsmelt process, compares the technical indexes, advantages and disadvantages of the two processes, discusses the research status of the two processes in China, and looks forward to their development direction in combination with the characteristics of each process.
[1] | 张志霞. 熔融还原炼铁与高炉炼铁能耗分析[J]. 现代冶金, 2019, 47(1):31-33.ZHANG Z X. Energy consumption analysis of smelting reduction ironmaking and blast furnace ironmaking[J]. Modern Metallurgy, 2019, 47(1):31-33. ZHANG Z X. Energy consumption analysis of smelting reduction ironmaking and blast furnace ironmaking[J]. Modern Metallurgy, 2019, 47(1):31-33. |
[2] | 储满生, 赵庆杰. 中国发展非高炉炼铁的现状及展望[J]. 中国冶金, 2008, 18(9):1-9.CHU M S, ZHAO Q J. Present status and development perspective of direct reduction and smelting reduction in China[J]. China Metallurgy, 2008, 18(9):1-9. doi: 10.3969/j.issn.1006-9356.2008.09.001 CHU M S, ZHAO Q J. Present status and development perspective of direct reduction and smelting reduction in China[J]. China Metallurgy, 2008, 18(9):1-9. doi: 10.3969/j.issn.1006-9356.2008.09.001 |
[3] | 张晓华, 师学峰, 赵凯, 等. 非高炉炼铁工艺流程发展现状及前景展望[J]. 矿产综合利用, 2020(2):8-15.ZHANG X H, SHI X F, ZHAO K, et al. Development status and prospect of smelting reduction ironmaking process[J]. Multipurpose Utilization of Mineral Resources, 2020(2):8-15. doi: 10.3969/j.issn.1000-6532.2020.02.002 ZHANG X H, SHI X F, ZHAO K, et al. Development status and prospect of smelting reduction ironmaking process[J]. Multipurpose Utilization of Mineral Resources, 2020(2):8-15. doi: 10.3969/j.issn.1000-6532.2020.02.002 |
[4] | 《柳钢科技》编辑部. 2021年中国非高炉炼铁行业现状[J]. 柳钢科技, 2021(4):4.Editorial Department of Liugang Science and Technology. Current situation of China's non blast furnace ironmaking industry in 2021[J]. Liugang Technology, 2021(4):4. Editorial Department of Liugang Science and Technology. Current situation of China's non blast furnace ironmaking industry in 2021[J]. Liugang Technology, 2021(4):4. |
[5] | 田津. 非高炉炼铁新工艺的探索[D]. 天津: 天津大学, 2018.TIAN J. Exploration of new process for non-blast furnace ironmaking[D]. Tianjin: Tianjin University, 2018. TIAN J. Exploration of new process for non-blast furnace ironmaking[D]. Tianjin: Tianjin University, 2018. |
[6] | 贾利军, 汤彦玲. HIsmelt熔融还原炼铁技术的工艺煤耗及生产实践[J]. 山东冶金, 2021, 43(4):3-6.JIA L J, TANG Y L. Coal consumption and production practice of the HIsmelt smelting reduction ironmaking technology[J]. Shandong Metallurgy, 2021, 43(4):3-6. JIA L J, TANG Y L. Coal consumption and production practice of the HIsmelt smelting reduction ironmaking technology[J]. Shandong Metallurgy, 2021, 43(4):3-6. |
[7] | 贾利军. Hismelt熔融还原技术的优化设计[A]//第十五届全国大高炉炼铁学术年会论文集[C]. 新疆: 中国金属学会炼铁分会, 2014, 949-953.JIA L J. Optimal design of HIsmelt smelting reduction technology[A]//Proceedings of the 15th National Symposium on Blast Furnace Ironmaking[C]. Xinjiang: Ironmaking Branch of China Metal Society, 2014, 949-953. JIA L J. Optimal design of HIsmelt smelting reduction technology[A]//Proceedings of the 15th National Symposium on Blast Furnace Ironmaking[C]. Xinjiang: Ironmaking Branch of China Metal Society, 2014, 949-953. |
[8] | 林金嘉, 宋文刚, 夏文尧. 宝钢 COREX-3000 的生产技术进步和改进方向[A]//第五届宝钢学术年会论文集[C]. 上海: 宝钢集团, 2013, 1-8.LIN J J, SONG W G, XIA W Y . Production technology progress and improvement direction of Corex-3000 in Baosteel[A]// Proceedings of the 5th Baosteel Annual Academic Conference[C]. Shanghai: Baosteel Group, 2013, 1-8. LIN J J, SONG W G, XIA W Y . Production technology progress and improvement direction of Corex-3000 in Baosteel[A]// Proceedings of the 5th Baosteel Annual Academic Conference[C]. Shanghai: Baosteel Group, 2013, 1-8. |
[9] | 张曦. FINEX与COREX及高炉流程能源消耗对比解析[J]. 资源节约与环保, 2019(4):2.ZHANG X. Comparison and analysis of energy consumption between Finex, Corex and blast furnace process[J]. Resource Conservation and Environmental Protection, 2019(4):2. doi: 10.3969/j.issn.1673-2251.2019.04.013 ZHANG X. Comparison and analysis of energy consumption between Finex, Corex and blast furnace process[J]. Resource Conservation and Environmental Protection, 2019(4):2. doi: 10.3969/j.issn.1673-2251.2019.04.013 |
[10] | 王敏, 任荣霞, 董洪旺, 等. 熔融还原炼铁最新技术及工艺路线选择探讨[J]. 钢铁, 2020, 55(8):145-150.WANG M, REN R X, DONG H W, et al. Latest technology of melting reduction ironmaking process and discussion of process route choice[J]. Iron and Steel, 2020, 55(8):145-150. WANG M, REN R X, DONG H W, et al. Latest technology of melting reduction ironmaking process and discussion of process route choice[J]. Iron and Steel, 2020, 55(8):145-150. |
[11] | 张志霞. Corex熔融还原技术研究进展[J]. 河北冶金, 2019(3):14-16.ZHANG Z X. Research on Corex smelting reduction tenichque[J]. Hebei Metallurgy, 2019(3):14-16. ZHANG Z X. Research on Corex smelting reduction tenichque[J]. Hebei Metallurgy, 2019(3):14-16. |
[12] | 张建良, 刘征建, 焦克新, 等. 炼铁新技术及基础理论研究进展[J]. 工程科学学报, 2021, 43(12):1630-1646.ZHANG J L, LIU Z J, JIAO K X, et al. Progress of new technologies and fundamental theory about ironmaking[J]. Chinese Journal of Engineering, 2021, 43(12):1630-1646. doi: 10.3321/j.issn.1001-053X.2021.12.bjkjdxxb202112005 ZHANG J L, LIU Z J, JIAO K X, et al. Progress of new technologies and fundamental theory about ironmaking[J]. Chinese Journal of Engineering, 2021, 43(12):1630-1646. doi: 10.3321/j.issn.1001-053X.2021.12.bjkjdxxb202112005 |
[13] | 胡俊鸽, 高战敏. Corex、Finex和HIsmelt技术的发展近况[J]. 钢铁研究, 2007, 35(4):55-58.HU J G, GAO Z M. Development of Corex, Finex and HIsmelt technologies[J]. Research on Iron & Steel, 2007, 35(4):55-58. doi: 10.3969/j.issn.1001-1447.2007.04.015 HU J G, GAO Z M. Development of Corex, Finex and HIsmelt technologies[J]. Research on Iron & Steel, 2007, 35(4):55-58. doi: 10.3969/j.issn.1001-1447.2007.04.015 |
[14] | 张建良, 李克江, 张冠琪, 等. 山东墨龙Hismelt工艺的技术创新及最新生产指标[J]. 炼铁, 2018, 37(2):56-59.ZHANG J L, LI K J, ZHANG G Q, et al. Technological innovation and latest production index of Shandong Molong HIsmelt process[J]. Ironmaking, 2018, 37(2):56-59. ZHANG J L, LI K J, ZHANG G Q, et al. Technological innovation and latest production index of Shandong Molong HIsmelt process[J]. Ironmaking, 2018, 37(2):56-59. |
[15] | 孟玉杰, 曹朝真, 梅丛华, 等. HIsmelt工艺的内衬寿命与煤气利用问题探析[J]. 炼铁, 2018, 37(3):59-62.MENG Y J, CAO C Z, MEI C H, et al. Analysis on inner lining service life and gas utilization of HIsmelt process[J]. Ironmaking, 2018, 37(3):59-62. MENG Y J, CAO C Z, MEI C H, et al. Analysis on inner lining service life and gas utilization of HIsmelt process[J]. Ironmaking, 2018, 37(3):59-62. |
[16] | 曹朝真, 张福明, 毛庆武, 等. 我国首座HIsmelt工业装置的设计优化与技术进展[J]. 炼铁, 2016, 35(5):59-62.CAO C Z, ZHANG F M, MAO Q W, et al. Design optimization and technical progress of the first HIsmelt industrial plant in China[J]. Ironmaking, 2016, 35(5):59-62. CAO C Z, ZHANG F M, MAO Q W, et al. Design optimization and technical progress of the first HIsmelt industrial plant in China[J]. Ironmaking, 2016, 35(5):59-62. |
[17] | 应自伟, 储满生, 唐珏, 等. 非高炉炼铁工艺现状及未来适应性分析[J]. 河北冶金, 2019(6):1-7.YING Z W, CHU M S, TANG J, et al. Current situation and future adaptability analysis of non-blast furnace ironmaking process[J]. Hebei Metallurgy, 2019(6):1-7. YING Z W, CHU M S, TANG J, et al. Current situation and future adaptability analysis of non-blast furnace ironmaking process[J]. Hebei Metallurgy, 2019(6):1-7. |
[18] | 王磊. 从欧冶炉的“前世今生”看中国宝武低碳发展[N]. 中国冶金报, 2021-6-8, (2).WANG L. On the low carbon development of Baowu in China from the "past and present life" of Ouye furnace[N]. China Metallurgical News, 2021-6-8 (2). WANG L. On the low carbon development of Baowu in China from the "past and present life" of Ouye furnace[N]. China Metallurgical News, 2021-6-8 (2). |
[19] | 徐大安, 吴铿, 王宁, 等. COREX用煤高温成焦质量分析及预测模型[J]. 过程工程学报, 2016, 16(2):252-258.XU D A, WU K, WANG N, et al. Analysis on coking quality of coal for COREX and prediction model[J]. The Chinese Journal of Process Engineering, 2016, 16(2):252-258. doi: 10.12034/j.issn.1009-606X.216023 XU D A, WU K, WANG N, et al. Analysis on coking quality of coal for COREX and prediction model[J]. The Chinese Journal of Process Engineering, 2016, 16(2):252-258. doi: 10.12034/j.issn.1009-606X.216023 |
[20] | 湛文龙, 吴铿, 徐万仁, 等. COREX熔融气化炉中块煤裂化现象[J]. 钢铁, 2013, 48(1):20-23.ZHAN W L, WU K, XU W R, et al. Lump coals cracking in COREX melter gasifier[J]. Iron and Steel, 2013, 48(1):20-23. ZHAN W L, WU K, XU W R, et al. Lump coals cracking in COREX melter gasifier[J]. Iron and Steel, 2013, 48(1):20-23. |
[21] | 刘起航, 吴铿, 杜瑞岭, 等. COREX流程中块煤/半焦性质与粉化关系探讨[J]. 钢铁, 2016, 51(8):11-16.LIU Q H, WU K, DU R L, et al. Discussion of lump coal/char properties with its disintegration in COREX process[J]. Iron and Steel, 2016, 51(8):11-16. LIU Q H, WU K, DU R L, et al. Discussion of lump coal/char properties with its disintegration in COREX process[J]. Iron and Steel, 2016, 51(8):11-16. |
[22] | 于春梅, 滕海鹏, 林豪, 等. Corex用焦在铁水中的渗碳特性[J]. 钢铁, 2021, 56(11):39-46.YU C M, TENG H P, LIN H, et al. Coke dissolution characteristics in molten iron of Corex[J]. Iron and Steel, 2021, 56(11):39-46. YU C M, TENG H P, LIN H, et al. Coke dissolution characteristics in molten iron of Corex[J]. Iron and Steel, 2021, 56(11):39-46. |
[23] | 应伟峰. Corex预还原竖炉的数学物理模拟[D]. 沈阳: 东北大学, 2013.YING W F. Mathematical and physical simulation of COREX pre-reduction shaft furnace[D]. Shenyang: Northeastern University, 2013. YING W F. Mathematical and physical simulation of COREX pre-reduction shaft furnace[D]. Shenyang: Northeastern University, 2013. |
[24] | 杜斌斌, 吴胜利, 周恒, 等. COREX竖炉结瘤对物料运动行为影响的DEM模拟[J]. 钢铁, 2020, 55(1):12-19.DU B B, WU S L, ZHOU H, et al. Effect of scaffolding on solid flow in COREX shaft furnace by discrete element simulation method[J]. Iron and Steel, 2020, 55(1):12-19. DU B B, WU S L, ZHOU H, et al. Effect of scaffolding on solid flow in COREX shaft furnace by discrete element simulation method[J]. Iron and Steel, 2020, 55(1):12-19. |
[25] | Yang You, Zhiguo Luo, Runyu Yang, et al. Experimental study of the effects of operation conditions on burden distribution in the COREX melter gasifier[J]. ISIJ International, 2018, 58(2):267-273. doi: 10.2355/isijinternational.ISIJINT-2017-474 |
[26] | Yang You, Yaoyu Li, Zhiguo Luo, et al. Investigating the effect of particle shape on the charging process in melter gasifiers in COREX[J]. Powder Technology, 2019, 351:305-313. doi: 10.1016/j.powtec.2019.04.040 |
[27] | 徐少兵, 许海法. 熔融还原炼铁技术发展情况和未来的思考[J]. 中国冶金, 2016, 26(10):33-39.XU S B, XU H F. Development of melting reduction iron making technology and future thinking[J]. China Metallurgy, 2016, 26(10):33-39. XU S B, XU H F. Development of melting reduction iron making technology and future thinking[J]. China Metallurgy, 2016, 26(10):33-39. |
[28] | 曹朝真, 孟玉杰, 梅丛华, 等. HIsmelt熔融还原工艺工业化最新进展[A]//第十一届中国钢铁年会论文集[C]. 北京: 中国金属学会, 2017, 238-244.CAO C Z, MENG Y J, MEI C H, et al. Latest progress in industrialization of HIsmelt process[A]// Proceedings of the 11th China Iron and steel annual conference[C]. Beijing: China Metal Society, 2017, 238-244. CAO C Z, MENG Y J, MEI C H, et al. Latest progress in industrialization of HIsmelt process[A]// Proceedings of the 11th China Iron and steel annual conference[C]. Beijing: China Metal Society, 2017, 238-244. |
[29] | 郈亚丽, 王华, 卿山. 钛铁矿和高磷铁矿混合矿氧气顶吹熔融还原炼铁的工艺条件[J]. 过程工程学报, 2011, 11(6):1024-1029.HOU Y L, WANG H, QING S. Smelting conditions of reduction ironmaking from ilmenite mixed with high phosphorus iron ore by top-blown oxygen[J]. The Chinese Journal of Process Engineering, 2011, 11(6):1024-1029. HOU Y L, WANG H, QING S. Smelting conditions of reduction ironmaking from ilmenite mixed with high phosphorus iron ore by top-blown oxygen[J]. The Chinese Journal of Process Engineering, 2011, 11(6):1024-1029. |
[30] | 高洋, 贵永亮, 宋春燕, 等. 高钛高炉渣综合利用现状及展望[J]. 矿产综合利用, 2019(1):6-10.GAO Y, GUI Y L, SONG C Y, et al. Present situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019(1):6-10. GAO Y, GUI Y L, SONG C Y, et al. Present situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019(1):6-10. |
[31] | 印万忠, 徐东, 杨耀辉, 等. 承德某钒钛磁铁矿尾矿资源化利用技术研究[J]. 矿产综合利用, 2020(6):37-42.YIN W Z, XU D, YANG Y H, et al. Research on the recycling technology for a vanadium-titanium magnetite tailings in Chengde[J]. Multipurpose Utilization of Mineral Resources, 2020(6):37-42. doi: 10.3969/j.issn.1000-6532.2020.06.007 YIN W Z, XU D, YANG Y H, et al. Research on the recycling technology for a vanadium-titanium magnetite tailings in Chengde[J]. Multipurpose Utilization of Mineral Resources, 2020(6):37-42. doi: 10.3969/j.issn.1000-6532.2020.06.007 |
[32] | 张立恒, 高子先, 汤卫东, 等. w(TiO2)对高铬型钒钛磁铁矿烧结矿冶金性能的影响[J]. 东北大学学报(自然科学版), 2020, 41(11):1667-1672.ZHANG L H, GAO Z X, TANG W D, et al. Effect of TiO2 content on metallurgy performance of high-chromium vanadium-titanium magnetite sinter[J]. Journal of Northeastern University(Natural Science), 2020, 41(11):1667-1672. doi: 10.12068/j.issn.1005-3026.2020.11.023 ZHANG L H, GAO Z X, TANG W D, et al. Effect of TiO2 content on metallurgy performance of high-chromium vanadium-titanium magnetite sinter[J]. Journal of Northeastern University(Natural Science), 2020, 41(11):1667-1672. doi: 10.12068/j.issn.1005-3026.2020.11.023 |
[33] | 严照照, 张淑会, 董晓旭, 等. 高炉渣的化学成分对其微观结构影响的研究现状[J]. 矿产综合利用, 2019(1):22-27.YAN Z Z, ZHANG S H, DONG X X, et al. Research status of the influence of blast furnace slag chemical composition on its microstructure[J]. Multipurpose Utilization of Mineral Resources, 2019(1):22-27. doi: 10.3969/j.issn.1000-6532.2019.01.005 YAN Z Z, ZHANG S H, DONG X X, et al. Research status of the influence of blast furnace slag chemical composition on its microstructure[J]. Multipurpose Utilization of Mineral Resources, 2019(1):22-27. doi: 10.3969/j.issn.1000-6532.2019.01.005 |
[34] | 李林. HIsmelt炼铁工艺的基础研究[J]. 北京: 北京科技大学, 2019.LI L. Basic research on HIsmelt ironmaking process[J]. Beijing: Beijing University of Science and Technology, 2019. LI L. Basic research on HIsmelt ironmaking process[J]. Beijing: Beijing University of Science and Technology, 2019. |
[35] | 范国锋, 卿山, 王华, 等. 高磷铁矿直接熔融还原动力学研究[J]. 昆明理工大学学报(自然科学版), 2012, 37(5):17-23.FAN G F, QING S, WANG H, et al. Kinetic research for direct smelting reduction of hgh-phosphorus iron ore[J]. Journal of Kunming University of Science and Technology ( Natural Science Edition), 2012, 37(5):17-23. FAN G F, QING S, WANG H, et al. Kinetic research for direct smelting reduction of hgh-phosphorus iron ore[J]. Journal of Kunming University of Science and Technology ( Natural Science Edition), 2012, 37(5):17-23. |
[36] | 赵丽树. CaO-SiO2-Al2O3-MgO-FetO渣系热力学性能的研究[D]. 沈阳: 东北大学, 2012.ZHAO L S. Study on thermodynamic properties of CaO-SiO2-Al2O3-MgO-FetO slag[D]. Shenyang: Northeastern University, 2012. ZHAO L S. Study on thermodynamic properties of CaO-SiO2-Al2O3-MgO-FetO slag[D]. Shenyang: Northeastern University, 2012. |
[37] | 张建良, 徐润生, 刘征建, 等. 一种基于HIsmelt熔融还原炉的锌回收方法[P]. 中国: CN111647704, 2020.ZHANG J L, XU R S, LIU Z J, et al. A zinc recovery method based on HIsmelt smelting reduction furnace[P]. China: CN111647704, 2020. ZHANG J L, XU R S, LIU Z J, et al. A zinc recovery method based on HIsmelt smelting reduction furnace[P]. China: CN111647704, 2020. |