| Citation: | CHEN Jiayi, NIU Jida, LYU Jianqiao, LI Xiaoteng, LI Lin. Study on the Adsorption Properties of Coal Gasification Slag to Xanthate in Mine Wastewater[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 190-200. doi: 10.3969/j.issn.1000-6532.2024.02.031 |
This is an article in the field of environmental engineering. In this article, the composition, structural characteristics and surface properties of coal gasification crude slag (CGCS) and coal gasification fine slag (CGFS) were characterized by X-ray fluorescence analyzer, scanning electron microscopy, FTIR spectroscopy, specific surface area and pore size analysis, and the results showed that CGFS had a more developed pore size structure and larger specific surface area. The adsorption test results show that the adsorption of n-butyl sodium xanthate by the two coal gasification slags is consistent with the Langmuir adsorption isotherm model and is a spontaneous heat process, which conforms to the quasi-secondary kinetic model, and the adsorption rate constant CGFS > CGCS. Among them, the adsorption performance of CGFS to n-butyl sodium xantho can reach 181.95 mg/g due to CGCS.
| [1] | 朱菊芬, 李健, 闫龙, 等. 煤气化渣资源化利用研究进展及应用展望[J]. 洁净煤技术, 2021, 27(6):11-21.ZHU J F, LI J, YAN L, et al. Research progress and application prospect of coal gasification slag resource utilization[J]. Clean Coal Technology, 2021, 27(6):11-21. ZHU J F, LI J, YAN L, et al. Research progress and application prospect of coal gasification slag resource utilization[J]. Clean Coal Technology, 2021, 27(6):11-21. |
| [2] | 曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(1):184-193.QU J S, ZHANG J B, SUN Z G, et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology, 2020, 26(1):184-193. QU J S, ZHANG J B, SUN Z G, et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology, 2020, 26(1):184-193. |
| [3] | 李俏, 董阳, Jow Jinder, 等. 煤气化渣的基本性能及其应用途径分析[J]. 新型建筑材料, 2023, 50(3):33-36+41.LI Q, DONG Y, J JINDER, et al. Fundamental characteristics and application of coal gasification slags[J]. New Building Materials, 2023, 50(3):33-36+41. doi: 10.3969/j.issn.1001-702X.2023.03.008 LI Q, DONG Y, J JINDER, et al. Fundamental characteristics and application of coal gasification slags[J]. New Building Materials, 2023, 50(3):33-36+41. doi: 10.3969/j.issn.1001-702X.2023.03.008 |
| [4] | 胡文豪, 张建波, 李少鹏, 等. 煤气化渣制备聚合氯化铝工艺研究[J]. 洁净煤技术, 2019, 25(1):154-159.HU W H, ZHANG J B, LI S P, et al. Study on the preparation of polyaluminium chloride from coal gasification residue[J]. Clean Coal Technology, 2019, 25(1):154-159. HU W H, ZHANG J B, LI S P, et al. Study on the preparation of polyaluminium chloride from coal gasification residue[J]. Clean Coal Technology, 2019, 25(1):154-159. |
| [5] | DUAN L Y, HU X D, SUN D S, et al. Rapid removal of low concentrations of mercury from wastewater using coal gasification slag[J]. Korean Journal of Chemical Engineering, 2020, 37(7). |
| [6] | 普煜, 马永成, 陈樑, 等. 鲁奇炉渣在废水净化中的应用研究[J]. 工业水处理, 2007, 27(5):59-62.PU Y, MA Y C, CHEN L, et al. Application of Lurgi slag to wastewater purification[J]. Industrial Water Treatment, 2007, 27(5):59-62. PU Y, MA Y C, CHEN L, et al. Application of Lurgi slag to wastewater purification[J]. Industrial Water Treatment, 2007, 27(5):59-62. |
| [7] | 肖炜, 田小松. 云南迪庆铜铅锌硫化矿浮选分离研究[J]. 矿产综合利用, 2020(1):65-70.XIAO W, TIAN X S. Study on flotation separation of copper-lead-zinc sulfide ore in Diqing Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014 XIAO W, TIAN X S. Study on flotation separation of copper-lead-zinc sulfide ore in Diqing Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014 |
| [8] | 温凯, 陈建华. 某含银复杂铜铅锌多金属硫化矿浮选实验[J]. 矿产综合利用, 2019(6):28-32.WEN K, CHEN J H. Experimental study on flotation of copper, lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32. doi: 10.3969/j.issn.1000-6532.2019.06.006 WEN K, CHEN J H. Experimental study on flotation of copper, lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32. doi: 10.3969/j.issn.1000-6532.2019.06.006 |
| [9] | 梁爽, 路亮, 吴桂叶. 硫化矿捕收剂的研究进展[J]. 中国矿业, 2018, 27(S2):156-158.LIANG S, LU L, WU G Y. Research status on the sulfide ore collectors[J]. China Mining Magazine, 2018, 27(S2):156-158. LIANG S, LU L, WU G Y. Research status on the sulfide ore collectors[J]. China Mining Magazine, 2018, 27(S2):156-158. |
| [10] | 杨状. g-C3N4基可见光催化剂净化黄药废水[D]. 鞍山: 辽宁科技大学, 2019.YANG Z. Purification of xanthate wastewater via g-C3N4 based visible light photocatalyst[D]. Anshan: University of Science and Technology Liaoning, 2019. YANG Z. Purification of xanthate wastewater via g-C3N4 based visible light photocatalyst[D]. Anshan: University of Science and Technology Liaoning, 2019. |
| [11] | 谢恩龙, 高起方, 段胜红, 等. 云南某含金多金属氧硫混合铜矿石选矿实验研究[J]. 黄金, 2020, 6(41):53-57.XIE E L, GAO Q F, DUAN S H, et al. Experimental study on beneficiation of a gold-bearing polymetallic oxygen-sulfur mixed copper ore in Yunnan[J]. GOLD, 2020, 6(41):53-57. XIE E L, GAO Q F, DUAN S H, et al. Experimental study on beneficiation of a gold-bearing polymetallic oxygen-sulfur mixed copper ore in Yunnan[J]. GOLD, 2020, 6(41):53-57. |
| [12] | 祁强, 王秀艳, 赵文辉, 等. 选矿废水处理技术研究进展[J]. 山西化工, 2014, 34(1):42-47.QI Q, WANG X Y, ZHAO W H, et al. The technology research progress on the mineral separation wastewater treatment[J]. Shanxi Chemical Industry, 2014, 34(1):42-47. QI Q, WANG X Y, ZHAO W H, et al. The technology research progress on the mineral separation wastewater treatment[J]. Shanxi Chemical Industry, 2014, 34(1):42-47. |
| [13] | 石焱, 赵莹, 赵鑫, 等. 微波-活性炭协同处理焦化废水中PAHs[J]. 矿产综合利用, 2019(5):111-115.SHI Y, ZHAO Y, ZHAO X, et al. Microwave-activated carbon co-treatment of PAHs in coking wastewater[J]. Multipurpose Utilization of Mineral Resources, 2019(5):111-115. doi: 10.3969/j.issn.1000-6532.2019.05.024 SHI Y, ZHAO Y, ZHAO X, et al. Microwave-activated carbon co-treatment of PAHs in coking wastewater[J]. Multipurpose Utilization of Mineral Resources, 2019(5):111-115. doi: 10.3969/j.issn.1000-6532.2019.05.024 |
| [14] | 郑长文, 管俊芳, 郑佳敏, 等. 矿业领域膨润土应用的研究进展[J]. 矿产综合利用, 2020(3):22-27.ZHENG C W, GUAN J F, ZHENG J M, e t al. Progress in the application of bentonite in mining industry[J]. Multipurpose Utilization of Mineral Resources, 2020(3):22-27. doi: 10.3969/j.issn.1000-6532.2020.03.004 ZHENG C W, GUAN J F, ZHENG J M, e t al. Progress in the application of bentonite in mining industry[J]. Multipurpose Utilization of Mineral Resources, 2020(3):22-27. doi: 10.3969/j.issn.1000-6532.2020.03.004 |
| [15] | 许文龙, 王晟, 包艳, 等. 石墨烯基气凝胶的制备及其油吸附性能研究进展[J]. 精细化工, 2022, 39(3):433-441.XU W L, WANG S, BAO Y, et al. Research progress in preparation and oil absorption properties of graphene-based aerogels[J]. Fine Chemicals, 2022, 39(3):433-441 XU W L, WANG S, BAO Y, et al. Research progress in preparation and oil absorption properties of graphene-based aerogels[J]. Fine Chemicals, 2022, 39(3):433-441 |
| [16] | LI C C, QIAO X C. A new approach to prepare mesoporous silica using coal fly ash[J]. The Chemical Engineering Journal, 2016, 302:388-94. doi: 10.1016/j.cej.2016.05.029 |
| [17] | 黄燕, 白英臣, 王彬, 等. 环丙沙星在亚高山草甸土和沼泽土中的吸附特性[J]. 环境科学研究, 2021, 34(3): 9.HUANG Y, BAI Y C, WANG B, et al. Adsorption characteristics of ciprofloxacin on subalpine meadow soils and marsh soils[J]. Research of Environmental Sciences, 2021, 34(3): 725-733. HUANG Y, BAI Y C, WANG B, et al. Adsorption characteristics of ciprofloxacin on subalpine meadow soils and marsh soils[J]. Research of Environmental Sciences, 2021, 34(3): 725-733. |
| [18] | ZHA, Na C B, J S C, et al. Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes[J]. Journal of Hazardous Materials, 2021. |
N2 adsorption-desorption isotherm of coal gasification slag(left: CGCS Right: CGFS)
Specific surface area of coal gasification slag (left: CGCS Right: CGFS)
Pore size distribution of coal gasification slag (Left: CGCS Right: CGFS)
Adsorption oscillation time experimental results
pH value condition experimental results
Experimental results of adsorption dosage
Gasification fine slag (CGFS) isotherm adsorption curve (left: Langmuir right: Freundlich)
Gasification crude slag (CGCS) isotherm adsorption curve (a: Langmuir b: Freundlich)
Combined of kinetic simulation of gasification fine slag
Fitting of gasification crude slag kinetic model
Specific surface area of coal gasification slag after adsorption (left: CGCS Right: CGFS)
Pore size distribution of coal gasification slag after adsorption (left: CGCS Right: CGFS)