Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 2
Article Contents

CHEN Jiayi, NIU Jida, LYU Jianqiao, LI Xiaoteng, LI Lin. Study on the Adsorption Properties of Coal Gasification Slag to Xanthate in Mine Wastewater[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 190-200. doi: 10.3969/j.issn.1000-6532.2024.02.031
Citation: CHEN Jiayi, NIU Jida, LYU Jianqiao, LI Xiaoteng, LI Lin. Study on the Adsorption Properties of Coal Gasification Slag to Xanthate in Mine Wastewater[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 190-200. doi: 10.3969/j.issn.1000-6532.2024.02.031

Study on the Adsorption Properties of Coal Gasification Slag to Xanthate in Mine Wastewater

More Information
  • This is an article in the field of environmental engineering. In this article, the composition, structural characteristics and surface properties of coal gasification crude slag (CGCS) and coal gasification fine slag (CGFS) were characterized by X-ray fluorescence analyzer, scanning electron microscopy, FTIR spectroscopy, specific surface area and pore size analysis, and the results showed that CGFS had a more developed pore size structure and larger specific surface area. The adsorption test results show that the adsorption of n-butyl sodium xanthate by the two coal gasification slags is consistent with the Langmuir adsorption isotherm model and is a spontaneous heat process, which conforms to the quasi-secondary kinetic model, and the adsorption rate constant CGFS > CGCS. Among them, the adsorption performance of CGFS to n-butyl sodium xantho can reach 181.95 mg/g due to CGCS.

  • 加载中
  • [1] 朱菊芬, 李健, 闫龙, 等. 煤气化渣资源化利用研究进展及应用展望[J]. 洁净煤技术, 2021, 27(6):11-21.ZHU J F, LI J, YAN L, et al. Research progress and application prospect of coal gasification slag resource utilization[J]. Clean Coal Technology, 2021, 27(6):11-21.

    Google Scholar

    ZHU J F, LI J, YAN L, et al. Research progress and application prospect of coal gasification slag resource utilization[J]. Clean Coal Technology, 2021, 27(6):11-21.

    Google Scholar

    [2] 曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(1):184-193.QU J S, ZHANG J B, SUN Z G, et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology, 2020, 26(1):184-193.

    Google Scholar

    QU J S, ZHANG J B, SUN Z G, et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology, 2020, 26(1):184-193.

    Google Scholar

    [3] 李俏, 董阳, Jow Jinder, 等. 煤气化渣的基本性能及其应用途径分析[J]. 新型建筑材料, 2023, 50(3):33-36+41.LI Q, DONG Y, J JINDER, et al. Fundamental characteristics and application of coal gasification slags[J]. New Building Materials, 2023, 50(3):33-36+41. doi: 10.3969/j.issn.1001-702X.2023.03.008

    CrossRef Google Scholar

    LI Q, DONG Y, J JINDER, et al. Fundamental characteristics and application of coal gasification slags[J]. New Building Materials, 2023, 50(3):33-36+41. doi: 10.3969/j.issn.1001-702X.2023.03.008

    CrossRef Google Scholar

    [4] 胡文豪, 张建波, 李少鹏, 等. 煤气化渣制备聚合氯化铝工艺研究[J]. 洁净煤技术, 2019, 25(1):154-159.HU W H, ZHANG J B, LI S P, et al. Study on the preparation of polyaluminium chloride from coal gasification residue[J]. Clean Coal Technology, 2019, 25(1):154-159.

    Google Scholar

    HU W H, ZHANG J B, LI S P, et al. Study on the preparation of polyaluminium chloride from coal gasification residue[J]. Clean Coal Technology, 2019, 25(1):154-159.

    Google Scholar

    [5] DUAN L Y, HU X D, SUN D S, et al. Rapid removal of low concentrations of mercury from wastewater using coal gasification slag[J]. Korean Journal of Chemical Engineering, 2020, 37(7).

    Google Scholar

    [6] 普煜, 马永成, 陈樑, 等. 鲁奇炉渣在废水净化中的应用研究[J]. 工业水处理, 2007, 27(5):59-62.PU Y, MA Y C, CHEN L, et al. Application of Lurgi slag to wastewater purification[J]. Industrial Water Treatment, 2007, 27(5):59-62.

    Google Scholar

    PU Y, MA Y C, CHEN L, et al. Application of Lurgi slag to wastewater purification[J]. Industrial Water Treatment, 2007, 27(5):59-62.

    Google Scholar

    [7] 肖炜, 田小松. 云南迪庆铜铅锌硫化矿浮选分离研究[J]. 矿产综合利用, 2020(1):65-70.XIAO W, TIAN X S. Study on flotation separation of copper-lead-zinc sulfide ore in Diqing Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014

    CrossRef Google Scholar

    XIAO W, TIAN X S. Study on flotation separation of copper-lead-zinc sulfide ore in Diqing Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014

    CrossRef Google Scholar

    [8] 温凯, 陈建华. 某含银复杂铜铅锌多金属硫化矿浮选实验[J]. 矿产综合利用, 2019(6):28-32.WEN K, CHEN J H. Experimental study on flotation of copper, lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32. doi: 10.3969/j.issn.1000-6532.2019.06.006

    CrossRef Google Scholar

    WEN K, CHEN J H. Experimental study on flotation of copper, lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32. doi: 10.3969/j.issn.1000-6532.2019.06.006

    CrossRef Google Scholar

    [9] 梁爽, 路亮, 吴桂叶. 硫化矿捕收剂的研究进展[J]. 中国矿业, 2018, 27(S2):156-158.LIANG S, LU L, WU G Y. Research status on the sulfide ore collectors[J]. China Mining Magazine, 2018, 27(S2):156-158.

    Google Scholar

    LIANG S, LU L, WU G Y. Research status on the sulfide ore collectors[J]. China Mining Magazine, 2018, 27(S2):156-158.

    Google Scholar

    [10] 杨状. g-C3N4基可见光催化剂净化黄药废水[D]. 鞍山: 辽宁科技大学, 2019.YANG Z. Purification of xanthate wastewater via g-C3N4 based visible light photocatalyst[D]. Anshan: University of Science and Technology Liaoning, 2019.

    Google Scholar

    YANG Z. Purification of xanthate wastewater via g-C3N4 based visible light photocatalyst[D]. Anshan: University of Science and Technology Liaoning, 2019.

    Google Scholar

    [11] 谢恩龙, 高起方, 段胜红, 等. 云南某含金多金属氧硫混合铜矿石选矿实验研究[J]. 黄金, 2020, 6(41):53-57.XIE E L, GAO Q F, DUAN S H, et al. Experimental study on beneficiation of a gold-bearing polymetallic oxygen-sulfur mixed copper ore in Yunnan[J]. GOLD, 2020, 6(41):53-57.

    Google Scholar

    XIE E L, GAO Q F, DUAN S H, et al. Experimental study on beneficiation of a gold-bearing polymetallic oxygen-sulfur mixed copper ore in Yunnan[J]. GOLD, 2020, 6(41):53-57.

    Google Scholar

    [12] 祁强, 王秀艳, 赵文辉, 等. 选矿废水处理技术研究进展[J]. 山西化工, 2014, 34(1):42-47.QI Q, WANG X Y, ZHAO W H, et al. The technology research progress on the mineral separation wastewater treatment[J]. Shanxi Chemical Industry, 2014, 34(1):42-47.

    Google Scholar

    QI Q, WANG X Y, ZHAO W H, et al. The technology research progress on the mineral separation wastewater treatment[J]. Shanxi Chemical Industry, 2014, 34(1):42-47.

    Google Scholar

    [13] 石焱, 赵莹, 赵鑫, 等. 微波-活性炭协同处理焦化废水中PAHs[J]. 矿产综合利用, 2019(5):111-115.SHI Y, ZHAO Y, ZHAO X, et al. Microwave-activated carbon co-treatment of PAHs in coking wastewater[J]. Multipurpose Utilization of Mineral Resources, 2019(5):111-115. doi: 10.3969/j.issn.1000-6532.2019.05.024

    CrossRef Google Scholar

    SHI Y, ZHAO Y, ZHAO X, et al. Microwave-activated carbon co-treatment of PAHs in coking wastewater[J]. Multipurpose Utilization of Mineral Resources, 2019(5):111-115. doi: 10.3969/j.issn.1000-6532.2019.05.024

    CrossRef Google Scholar

    [14] 郑长文, 管俊芳, 郑佳敏, 等. 矿业领域膨润土应用的研究进展[J]. 矿产综合利用, 2020(3):22-27.ZHENG C W, GUAN J F, ZHENG J M, e t al. Progress in the application of bentonite in mining industry[J]. Multipurpose Utilization of Mineral Resources, 2020(3):22-27. doi: 10.3969/j.issn.1000-6532.2020.03.004

    CrossRef Google Scholar

    ZHENG C W, GUAN J F, ZHENG J M, e t al. Progress in the application of bentonite in mining industry[J]. Multipurpose Utilization of Mineral Resources, 2020(3):22-27. doi: 10.3969/j.issn.1000-6532.2020.03.004

    CrossRef Google Scholar

    [15] 许文龙, 王晟, 包艳, 等. 石墨烯基气凝胶的制备及其油吸附性能研究进展[J]. 精细化工, 2022, 39(3):433-441.XU W L, WANG S, BAO Y, et al. Research progress in preparation and oil absorption properties of graphene-based aerogels[J]. Fine Chemicals, 2022, 39(3):433-441

    Google Scholar

    XU W L, WANG S, BAO Y, et al. Research progress in preparation and oil absorption properties of graphene-based aerogels[J]. Fine Chemicals, 2022, 39(3):433-441

    Google Scholar

    [16] LI C C, QIAO X C. A new approach to prepare mesoporous silica using coal fly ash[J]. The Chemical Engineering Journal, 2016, 302:388-94. doi: 10.1016/j.cej.2016.05.029

    CrossRef Google Scholar

    [17] 黄燕, 白英臣, 王彬, 等. 环丙沙星在亚高山草甸土和沼泽土中的吸附特性[J]. 环境科学研究, 2021, 34(3): 9.HUANG Y, BAI Y C, WANG B, et al. Adsorption characteristics of ciprofloxacin on subalpine meadow soils and marsh soils[J]. Research of Environmental Sciences, 2021, 34(3): 725-733.

    Google Scholar

    HUANG Y, BAI Y C, WANG B, et al. Adsorption characteristics of ciprofloxacin on subalpine meadow soils and marsh soils[J]. Research of Environmental Sciences, 2021, 34(3): 725-733.

    Google Scholar

    [18] ZHA, Na C B, J S C, et al. Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes[J]. Journal of Hazardous Materials, 2021.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(7)

Article Metrics

Article views(952) PDF downloads(175) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint