Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 2
Article Contents

LI Shasha, LI Liubei, WU Wei, FENG Hu. Rheological Properties of Alkali Activated Fly Ash Slag Cementitious Materials[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 30-35. doi: 10.3969/j.issn.1000-6532.2024.02.005
Citation: LI Shasha, LI Liubei, WU Wei, FENG Hu. Rheological Properties of Alkali Activated Fly Ash Slag Cementitious Materials[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 30-35. doi: 10.3969/j.issn.1000-6532.2024.02.005

Rheological Properties of Alkali Activated Fly Ash Slag Cementitious Materials

  • This is an article in the field of ceramics and composites. In order to study the early rheological properties of alkali-activated fly ash-slag cementitious system, the composite pastes with different mass ratios of fly ash (FA) to slag (GGBS) and alkaline activator content were prepared. The fluidity and rheological properties of the pastes were tested by mini-cone slump cone, Brookfield DV3T rheometer,respectively. Finally, the hydration exothermic rate of composite pastes with each ratio was tested by isothermal calorimeter. Results show that when FA/GGBS ratio is 3∶7, the fluidity of paste with 4% NaOH content is the lowest. With the increase of FA mass ratio and NaOH molar mass, the fluidity of alkali-activated FA-GGBS cementitious system increased, and the yield stress and plastic viscosity decreased. The growth of FA content decreases the early hydration rate significantly, while the increase of alkali activator content remarkably increases the peak rate of hydration heat release.

  • 加载中
  • [1] 熊文良, 黄阳, 张丽军, 等. 稀土尾矿配料煅烧硅酸盐水泥熟料的实验研究[J]. 矿产综合利用, 2021(5):76-80.XIONG W L, HUANG Y, ZHANG L J, et al. Experimental study on calcination of Portland cement clinker with rare earth tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(5):76-80.

    Google Scholar

    XIONG W L, HUANG Y, ZHANG L J, et al. Experimental study on calcination of Portland cement clinker with rare earth tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(5):76-80.

    Google Scholar

    [2] 冯卡, 王馨语. 硫铁矿尾矿矿渣改良混凝土力学性质与耐久性[J]. 矿产综合利用, 2022(3):6-11.FENG K, WANG X Y. Research on mechanical properties and durability of concrete improved by pyrite tailings and slag[J]. Multipurpose Utilization of Mineral Resources, 2022(3):6-11.

    Google Scholar

    FENG K, WANG X Y. Research on mechanical properties and durability of concrete improved by pyrite tailings and slag[J]. Multipurpose Utilization of Mineral Resources, 2022(3):6-11.

    Google Scholar

    [3] 邓晓阳, 裴新意, 刘自妥, 等. 粉煤灰中铵离子含量对混凝土减水剂掺量及吸附特性影响[J]. 矿产综合利用, 2022(3):64-69.DENG X Y, PEI X Y, LIU Z T, et al. Effect of ammonium ion content on superplasticizer dosage and adsorption property[J]. Multipurpose Utilization of Mineral Resources, 2022(3):64-69.

    Google Scholar

    DENG X Y, PEI X Y, LIU Z T, et al. Effect of ammonium ion content on superplasticizer dosage and adsorption property[J]. Multipurpose Utilization of Mineral Resources, 2022(3):64-69.

    Google Scholar

    [4] 阎培渝. 粉煤灰在复合胶凝材料水化过程中的作用机理[J]. 硅酸盐学报, 2007(S1):167-171.YAN P Y. Mechanism of fly ash’s effects during hydration process of composite binder[J]. Journal of the Chinese Ceramic Society, 2007(S1):167-171.

    Google Scholar

    YAN P Y. Mechanism of fly ash’s effects during hydration process of composite binder[J]. Journal of the Chinese Ceramic Society, 2007(S1):167-171.

    Google Scholar

    [5] 杨晓炳, 王永定, 高谦, 等. 利用脱硫灰渣和粉煤灰开发充填胶凝材料[J]. 矿产综合利用, 2019(4):130-134.YANG X B, WANG Y D, GAO Q, et al. Research on a new cementitious materials with desulphurization ash and fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(4):130-134.

    Google Scholar

    YANG X B, WANG Y D, GAO Q, et al. Research on a new cementitious materials with desulphurization ash and fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(4):130-134.

    Google Scholar

    [6] 聂轶苗, 夏淼, 刘攀攀, 等. 粉煤灰基矿物聚合材料研究进展[J]. 矿产综合利用, 2022(4):123-128.NIE Y M, XIA M, LIU P P, et al. Research progress on fly ash based geopolymer[J]. Multipurpose Utilization of Mineral Resources, 2022(4):123-128.

    Google Scholar

    NIE Y M, XIA M, LIU P P, et al. Research progress on fly ash based geopolymer[J]. Multipurpose Utilization of Mineral Resources, 2022(4):123-128.

    Google Scholar

    [7] HOJATI M, RADLIŃSKA A. Shrinkage and strength development of alkali-activated fly ash-slag binary cements[J]. Construction and Building Materials, 2017, 150:808-816. doi: 10.1016/j.conbuildmat.2017.06.040

    CrossRef Google Scholar

    [8] FERNÁNDEZ-JIMÉNEZ A, PALOMO A. Composition and microstructure of alkali activated fly ash binder: Effect of the activator[J]. Cement and Concrete Research, 2005, 35(10):1984-1992. doi: 10.1016/j.cemconres.2005.03.003

    CrossRef Google Scholar

    [9] SINGH B, ISHWARYA G, GUPTA M, et al. Geopolymer concrete: a review of some recent developments[J]. Construction and Building Materials, 2015, 85:78-90. doi: 10.1016/j.conbuildmat.2015.03.036

    CrossRef Google Scholar

    [10] PANDA B, UNLUER C, TAN M J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing[J]. Cement and Concrete Composites, 2018, 94:307-314. doi: 10.1016/j.cemconcomp.2018.10.002

    CrossRef Google Scholar

    [11] PUERTAS F, VARGA C, ALONSO M M. Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution[J]. Cement and Concrete Composites, 2014, 53:279-288. doi: 10.1016/j.cemconcomp.2014.07.012

    CrossRef Google Scholar

    [12] ALBAR A, CHOUGAN M, AL-KHEETAN M J, et al. Effective extrusion-based 3D printing system design for cementitious-based materials[J]. Results in Engineering, 2020, 6:100135. doi: 10.1016/j.rineng.2020.100135

    CrossRef Google Scholar

    [13] LI L, LU J X, ZHANG B, et al. Rheology behavior of one-part alkali activated slag/glass powder (AASG) pastes[J]. Construction and Building Materials, 2020, 258:120381. doi: 10.1016/j.conbuildmat.2020.120381

    CrossRef Google Scholar

    [14] THIEDEITZ M, DRESSLER I, KRÄNKEL T, et al. Effect of pre-shear on agglomeration and rheological parameters of cement paste[J]. Materials, 2020, 13(9):2173. doi: 10.3390/ma13092173

    CrossRef Google Scholar

    [15] 马昆林, 冯金, 龙广成, 等. 水泥-粉煤灰浆体流变特性及其机理研究[J]. 铁道科学与工程学报, 2017, 14(3):465-472.MA K L, FENG J, LONG G C, et al. Rheological characteristic and its mechanism of cement-fly ash paste[J]. Journal of Railway Science and Engineering, 2017, 14(3):465-472.

    Google Scholar

    MA K L, FENG J, LONG G C, et al. Rheological characteristic and its mechanism of cement-fly ash paste[J]. Journal of Railway Science and Engineering, 2017, 14(3):465-472.

    Google Scholar

    [16] 阎培渝, 郑峰. 水泥基材料的水化动力学模型[J]. 硅酸盐学报, 2006(5):555-559.YAN P Y, ZHENG F. Kinetics model for the hydration mechanism of cementitious materials[J]. Journal of the Chinese Ceramic Society, 2006(5):555-559.

    Google Scholar

    YAN P Y, ZHENG F. Kinetics model for the hydration mechanism of cementitious materials[J]. Journal of the Chinese Ceramic Society, 2006(5):555-559.

    Google Scholar

    [17] PACHECO-TORGAL F, CASTRO-GOMES J, JALALI S. Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products[J]. Construction and Building Materials, 2008, 22(7):1305-1314. doi: 10.1016/j.conbuildmat.2007.10.015

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(768) PDF downloads(59) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint