Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 1
Article Contents

YU Bo, HE Tingshu, WANG Xin, HE Hanbing, WANG Yubin. Effect of Pb2+, Zn2+ on Floatability of Chalcopyrite in Z-200 System and Its Mechanism[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 155-159, 166. doi: 10.3969/j.issn.1000-6532.2024.01.020
Citation: YU Bo, HE Tingshu, WANG Xin, HE Hanbing, WANG Yubin. Effect of Pb2+, Zn2+ on Floatability of Chalcopyrite in Z-200 System and Its Mechanism[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 155-159, 166. doi: 10.3969/j.issn.1000-6532.2024.01.020

Effect of Pb2+, Zn2+ on Floatability of Chalcopyrite in Z-200 System and Its Mechanism

More Information
  • This is an article in the field of mineral processing engineering. Chalcopyrite, galena and sphalerite are usually associated with each other. In order to find out the influence of Pb2+ and Zn2+ on the flotation behavior and surface characteristics of chalcopyrite, the difference of the influence of Pb2+ and Zn2+ on the floatability of chalcopyrite was studied by single mineral flotation test, solution chemical calculation, Zeta potential and XPS detection. The results show that Pb2+ and Zn2+ are adsorbed on the surface of chalcopyrite, which changes the Zeta potential of chalcopyrite surface and inhibits the floatability of chalcopyrite, and the inhibition increases with the increase of pH value. According to the flotation test results, zinc is mainly adsorbed on the surface of chalcopyrite in the form of Zn(OH)2 precipitation in the range of pulp pH, which has an inhibitory effect on the flotation of chalcopyrite. Therefore, the inhibitory effect of Zn2+ on the flotation of chalcopyrite is more significant than that of Pb2+ and XPS results show that Pb2+ and Zn2+ can precipitate on the surface of chalcopyrite and exist on the surface of chalcopyrite in the form of chemical adsorption, thus inhibiting the floatability of chalcopyrite.

  • 加载中
  • [1] 王威, 李以科, 封宁. 全球铜矿资源格局分析[J]. 资源与产业, 2013, 15(5):27-32.WANG W, LI Y K, FENG N. Global cooper resource pettern[J]. Resources and Industry, 2013, 15(5):27-32.

    Google Scholar

    WANG W, LI Y K, FENG N. Global cooper resource pettern[J]. Resources and Industry, 2013, 15(5):27-32.

    Google Scholar

    [2] 张汉彪, 薛伟. 刚果(金)某复杂难选氧化铜矿选矿试验研究[J]. 矿产综合利用, 2020(3):117-120.ZHANG H B, XUE W. Experimental study on beneficiation of a complex refractory copper oxide ore in Congo (DRC)[J]. Multipurpose Utilization of Mineral Resources, 2020(3):117-120.

    Google Scholar

    ZHANG H B, XUE W. Experimental study on beneficiation of a complex refractory copper oxide ore in Congo (DRC)[J]. Multipurpose Utilization of Mineral Resources, 2020(3):117-120.

    Google Scholar

    [3] 黄真瑞, 钟宏, 王帅, 等. 黄铜矿浮选工艺及捕收剂研究进展[J]. 应用化工, 2013, 42(11): 2048-2051+2055.HUANG Z R, ZHONG H, WANG S , et al. Progress of flotation technology and collectors for chalcopyrite [J]. Applied Chemical Industry, 2013, 42 (11): 2048-2051 + 2055.

    Google Scholar

    HUANG Z R, ZHONG H, WANG S , et al. Progress of flotation technology and collectors for chalcopyrite [J]. Applied Chemical Industry, 2013, 42 (11): 2048-2051 + 2055.

    Google Scholar

    [4] 肖炜, 田小松. 云南迪庆铜铅锌硫化矿浮选分离研究[J]. 矿产综合利用, 2020(1):65-70.XIAO W, TIAN X S. Study on flotation separation of copper-lead-zinc sulfide ore in Diqing Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014

    CrossRef Google Scholar

    XIAO W, TIAN X S. Study on flotation separation of copper-lead-zinc sulfide ore in Diqing Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014

    CrossRef Google Scholar

    [5] 王亮, 李育彪, 李万青. 不同价态杂质离子对黄铜矿浮选的影响机理研究[J]. 金属矿山, 2018(12):84-88.WANG L, LI Y B, LI W Q. Influencing mechanism of ions with different valences on chalcopyrite flotation[J]. Metal Mineses, 2018(12):84-88. doi: 10.19614/j.cnki.jsks.201812015

    CrossRef Google Scholar

    WANG L, LI Y B, LI W Q. Influencing mechanism of ions with different valences on chalcopyrite flotation[J]. Metal Mineses, 2018(12):84-88. doi: 10.19614/j.cnki.jsks.201812015

    CrossRef Google Scholar

    [6] 雷大士, 王宇斌, 郭月琴, 等. 陕西某含铋白钨矿选矿试验研究[J]. 中国钨业, 2017, 32(3):31-35.LEI D S, WANG Y B, GUO Y Q, et al. Beneficiation of a bismuth-containing scheelite in Shaanxi[J]. China Tungsten Industry, 2017, 32(3):31-35.

    Google Scholar

    LEI D S, WANG Y B, GUO Y Q, et al. Beneficiation of a bismuth-containing scheelite in Shaanxi[J]. China Tungsten Industry, 2017, 32(3):31-35.

    Google Scholar

    [7] 温 凯, 陈建华. 某含银复杂铜铅锌多金属硫化矿浮选试验[J]. 矿产综合利用, 2019(6):28-32.WEN K, CHEN J H. Experimental study on flotation of copper, lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32.

    Google Scholar

    WEN K, CHEN J H. Experimental study on flotation of copper, lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32.

    Google Scholar

    [8] 鱼博, 王宇斌, 王妍, 等. 某铜铅锌多金属硫化矿工艺矿物学研究[J]. 中国钼业, 2021, 45(1):34-38.YU B, WANG Y B, WANG Y, et al. Research on process mineralogy of a copper-lead-zinc polymetallic sulphide ore[J]. China Molybdenum Industry, 2021, 45(1):34-38.

    Google Scholar

    YU B, WANG Y B, WANG Y, et al. Research on process mineralogy of a copper-lead-zinc polymetallic sulphide ore[J]. China Molybdenum Industry, 2021, 45(1):34-38.

    Google Scholar

    [9] 魏明安, 孙传尧. 矿浆中的难免离子对黄铜矿和黄铜矿浮选的影响[J]. 有色金属, 2008(2):92-95.WEI M A, SUN C Y. Influence of metal cations in pulp to chalcopyrite and galena floatability[J]. Nonferrous Metals(Mineral Processing Section), 2008(2):92-95.

    Google Scholar

    WEI M A, SUN C Y. Influence of metal cations in pulp to chalcopyrite and galena floatability[J]. Nonferrous Metals(Mineral Processing Section), 2008(2):92-95.

    Google Scholar

    [10] 施帅, 何廷树, 李慧. Ca2+和Mg2+对辉钼矿可浮性的影响对比[J]. 过程工程学报, 2021, 21(2):153-159.SHI S, HE T S, LI H. Comparison of the effects of Ca2+and Mg2+ on the floatability of molybdenite[J]. Journal of Process Engineering, 2021, 21(2):153-159.

    Google Scholar

    SHI S, HE T S, LI H. Comparison of the effects of Ca2+and Mg2+ on the floatability of molybdenite[J]. Journal of Process Engineering, 2021, 21(2):153-159.

    Google Scholar

    [11] 刘微, 刘广义, 肖静晶, 等. N-异丁氧羰基硫脲浮选黄铜矿的机理[J]. 中国有色金属学报, 2017, 27(1):128-137.LIU W, LIU G Y, XIAO J J, et al. Mechanism of N-isobutoxycarbonyl thiourea (iBCTU) for chalcopyrite flotation[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(1):128-137.

    Google Scholar

    LIU W, LIU G Y, XIAO J J, et al. Mechanism of N-isobutoxycarbonyl thiourea (iBCTU) for chalcopyrite flotation[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(1):128-137.

    Google Scholar

    [12] 马鑫, 王帅, 钟宏. 苄基三硫代碳酸钠的合成及其对黄铜矿的浮选性能[J]. 中国有色金属学报, 2018, 28(5):1067-1075.MA X, WANG S, ZHONG H. Sodium benzyl trithiocarbonate synthesis and flotation performance to chalcopyrite[J]. Chinese Journal of Nonferrous metals, 2018, 28(5):1067-1075. doi: 10.19476/j.ysxb.1004.0609.2018.05.24

    CrossRef Google Scholar

    MA X, WANG S, ZHONG H. Sodium benzyl trithiocarbonate synthesis and flotation performance to chalcopyrite[J]. Chinese Journal of Nonferrous metals, 2018, 28(5):1067-1075. doi: 10.19476/j.ysxb.1004.0609.2018.05.24

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(688) PDF downloads(110) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint