Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 No. 1
Article Contents

XU Hongxiang, PANG Zengrui, LI Quan, HU Mingzhen, DENG Jiushuai, ZHANG Qian. Research Progress on the Effect of Inevitable Ions in Slurry on the Separation of Lead-Zinc Sulfide Ore[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 128-134. doi: 10.3969/j.issn.1000-6532.2024.01.015
Citation: XU Hongxiang, PANG Zengrui, LI Quan, HU Mingzhen, DENG Jiushuai, ZHANG Qian. Research Progress on the Effect of Inevitable Ions in Slurry on the Separation of Lead-Zinc Sulfide Ore[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 128-134. doi: 10.3969/j.issn.1000-6532.2024.01.015

Research Progress on the Effect of Inevitable Ions in Slurry on the Separation of Lead-Zinc Sulfide Ore

More Information
  • This is an article in the field of mineral processing engineering. Some unavoidable ions commonly present in the slurry solution have an important influence on the flotation separation of lead-zinc sulfide ore. The unavoidable ions in the slurry mainly come from the water used in the processing plant, the dissolution of minerals, the dissociation of activators or depressants, and the primary ions introduced by the release of fluid inclusions and the secondary ions introduced during the grinding process. This article summarizes and analyzes the effects on the flotation separation of lead-zinc sulfide ore which is caused by the primary ions introduced in the slurry and the secondary inevitable ions introduced in the grinding system. It is found that both primary ions and secondary ions have obvious effects on the flotation behavior of lead-zinc sulfide ore. And many scholars have done a lot of research on this phenomenon. In this paper, a great breakthrough has been made through the adjustment and control of reagents and changes in the grinding environment. At the same time, this article provides important research ideas for follow-up researchers. The focus of this article is how to integrate the previous research results with the field process significantly, how to eliminate inevitable ions from the source without affecting the industrial economy, The important direction of future research is still how to reduce the influence of inevitable ions on the flotation index from the field process.

  • 加载中
  • [1] 张长青, 芮宗瑶, 陈毓川, 等. 中国铅锌矿资源潜力和主要战略接续区[J]. 中国地质, 2013, 40(1):248-272.ZHANG C Q, RUI Z Y, CHEN Y C, et al. The main successive strategic bases of resources for Pb-Zn deposits in China[J]. Geology of China, 2013, 40(1):248-272. doi: 10.3969/j.issn.1000-3657.2013.01.017

    CrossRef Google Scholar

    ZHANG C Q, RUI Z Y, CHEN Y C, et al. The main successive strategic bases of resources for Pb-Zn deposits in China[J]. Geology of China, 2013, 40(1):248-272. doi: 10.3969/j.issn.1000-3657.2013.01.017

    CrossRef Google Scholar

    [2] 程倩, 王明, 万宏民, 等. 某低品位铅锌矿选矿工艺研究[J]. 矿产综合利用, 2021(1):65-71.CHENG Q, WANG M, WAN H M, et al. Study on mineral processing technology for a low-grade lead-zinc ore[J]. Multipurpose Utilization of Mineral Resources, 2021(1):65-71.

    Google Scholar

    CHENG Q, WANG M, WAN H M, et al. Study on mineral processing technology for a low-grade lead-zinc ore[J]. Multipurpose Utilization of Mineral Resources, 2021(1):65-71.

    Google Scholar

    [3] 温 凯, 陈建华. 某含银复杂铜铅锌多金属硫化矿浮选试验[J]. 矿产综合利用, 2019(6):28-32.WEN K, CHEN J H. Experimental study on flotation of copper, lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32.

    Google Scholar

    WEN K, CHEN J H. Experimental study on flotation of copper, lead and zinc polymetallic sulfide ore containing silver[J]. Multipurpose Utilization of Mineral Resources, 2019(6):28-32.

    Google Scholar

    [4] 廖诗进, 何玉良, 岳国利, 等. 某铅锌矿综合回收工艺技术[J]. 矿产综合利用, 2021(3):9-16.LIAO S J, HE Y L, YUE G L, et al. Comprehensive recovery technology of a lead-zinc ore[J]. Multipurpose Utilization of Mineral Resources, 2021(3):9-16.

    Google Scholar

    LIAO S J, HE Y L, YUE G L, et al. Comprehensive recovery technology of a lead-zinc ore[J]. Multipurpose Utilization of Mineral Resources, 2021(3):9-16.

    Google Scholar

    [5] Xian Yongjun, Wen Shuming, Liu Jian, et al. Discovery of a new source of unavoidable ions in pyrite aqueous solutions[J]. Mining, metallurgy & exploration, 2013, 30(2): 117-121.

    Google Scholar

    [6] Deng Jiushuai, Wen Shuming, Xian Yongjun, et al. New discovery of unavoidable ions source in chalcopyrite flotation pulp: Fluid inclusions[J]. Minerals Engineering, 2013, 42.

    Google Scholar

    [7] Deng Jiu-shuai, Mao Ying-bo, Wen Shu-ming, et al. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(2):111-115. doi: 10.1007/s12613-015-1050-x

    CrossRef Google Scholar

    [8] 邓久帅. 黄铜矿流体包裹体组分释放及其与弛豫表面的相互作用[D]. 昆明: 昆明理工大学, 2013.DENG J S. Component release of chalcopyrite fluid inclusions and their interaction with relaxation surfaces[D]. Kunming: Kunming University of Science and Technology, 2013.

    Google Scholar

    DENG J S. Component release of chalcopyrite fluid inclusions and their interaction with relaxation surfaces[D]. Kunming: Kunming University of Science and Technology, 2013.

    Google Scholar

    [9] 魏明安, 孙传尧. 矿浆中的难免离子对黄铜矿和方铅矿浮选的影响[J]. 有色金属, 2008(2):92-95.WEI M A, SUN C Y. Influence of metal cations in pulp to chalcopyrite and galena floatability[J]. Non-ferrous metals, 2008(2):92-95.

    Google Scholar

    WEI M A, SUN C Y. Influence of metal cations in pulp to chalcopyrite and galena floatability[J]. Non-ferrous metals, 2008(2):92-95.

    Google Scholar

    [10] 刘爽, 孙春宝, 陈秀枝. 钙、镁、硫酸根离子对会泽铅锌矿硫化矿浮游性的影响[J]. 有色金属(选矿部分), 2007(2):26-28.LIU S, SUN C B, CHEN X Z. Effect of Ca2+、Mg2+ and SO42- on floatability of sulfide mineral of huize leza-zinc ore[J]. Non-Ferrous Metals (Mineral Processing Section), 2007(2):26-28.

    Google Scholar

    LIU S, SUN C B, CHEN X Z. Effect of Ca2+、Mg2+ and SO42- on floatability of sulfide mineral of huize leza-zinc ore[J]. Non-Ferrous Metals (Mineral Processing Section), 2007(2):26-28.

    Google Scholar

    [11] 祁忠旭. 铅锌选矿废水对硫化铅浮选的影响研究[J]. 矿业研究与开发, 2021, 41(1):146-149.QI Z X. Study on the influence of lead-zinc mineral processing wastewater on lead sulfide flotation[J]. Mining Research and Development, 2021, 41(1):146-149. doi: 10.13827/j.cnki.kyyk.2021.01.026

    CrossRef Google Scholar

    QI Z X. Study on the influence of lead-zinc mineral processing wastewater on lead sulfide flotation[J]. Mining Research and Development, 2021, 41(1):146-149. doi: 10.13827/j.cnki.kyyk.2021.01.026

    CrossRef Google Scholar

    [12] Guo Bao, Peng Yongjun. The interaction between copper species and pyrite surfaces in copper cyanide solutions[J]. International Journal of Mineral Processing, 2017, 158:85-92. doi: 10.1016/j.minpro.2016.11.021

    CrossRef Google Scholar

    [13] Ikumapayi Fatai, Makitalo Maria, Johansson Bjorn, et al. Recycling of process water in sulphide flotation: Effect of calcium and sulphate ions on flotation of galena[J]. Minerals Engineering, 2012, 39.

    Google Scholar

    [14] Bıçak Özlem, Ekmekçi Zafir, Can Metin, et al. The effect of water chemistry on froth stability and surface chemistry of the flotation of a Cu–Zn sulfide ore[J]. International Journal of Mineral Processing, 2012, 102-103:32-37. doi: 10.1016/j.minpro.2011.09.005

    CrossRef Google Scholar

    [15] Huang Peng, Cao Mingli, Liu Qi. Selective depression of sphalerite by chitosan in differential Pb-Zn flotation[J]. International Journal of Mineral Processing, 2013, 122.

    Google Scholar

    [16] Zhang Q, Xu Z, Bozkurt V, et al. Pyrite flotation in the presence of metal ions and sphalerite[J]. International Journal of Mineral Processing, 1997, 52(2).

    Google Scholar

    [17] 何发钰, 孙传尧, 宋磊. 磨矿环境对方铅矿和闪锌矿矿浆化学性质的影响[J]. 金属矿山, 2006(8):30-33.HE F Y, SUN C Y, SONG L. Study on effect of grinding environment on pulp chemistry of galena and sphalerite[J]. Metal Mine, 2006(8):30-33.

    Google Scholar

    HE F Y, SUN C Y, SONG L. Study on effect of grinding environment on pulp chemistry of galena and sphalerite[J]. Metal Mine, 2006(8):30-33.

    Google Scholar

    [18] 何发钰, 孙传尧, 宋磊. 磨矿环境对硫化矿物浮选的影响[J]. 中国工程科学, 2006(8):92-102.HE F Y, SUN C Y, SONG L. Influence of grinding environment on flotation of sulfide minerals[J]. Chinese Engineering Science, 2006(8):92-102. doi: 10.3969/j.issn.1009-1742.2006.08.019

    CrossRef Google Scholar

    HE F Y, SUN C Y, SONG L. Influence of grinding environment on flotation of sulfide minerals[J]. Chinese Engineering Science, 2006(8):92-102. doi: 10.3969/j.issn.1009-1742.2006.08.019

    CrossRef Google Scholar

    [19] 何发钰, 孙传尧, 宋磊. 磨矿介质对方铅矿表面性质和浮选行为的影响[J]. 有色金属, 2006(3):81-84.HE F Y, SUN C Y, SONG L. Effects of grinding media on surface properties and flotation behaviour of galena[J]. Non-ferrous metals, 2006(3):81-84.

    Google Scholar

    HE F Y, SUN C Y, SONG L. Effects of grinding media on surface properties and flotation behaviour of galena[J]. Non-ferrous metals, 2006(3):81-84.

    Google Scholar

    [20] Wei Y. , Sandenbergh R. F. Effects of grinding environment on the flotation of Rosh Pinah complex Pb/Zn ore[J]. Minerals Engineering, 2006, 20(3).

    Google Scholar

    [21] Bruckard W. J. , Sparrow G J, Woodcock J T. A review of the effects of the grinding environment on the flotation of copper sulphides[J]. International Journal of Mineral Processing, 2011, 100(1-2): 1-13.

    Google Scholar

    [22] 胡岳华, 孙伟, 覃文庆. 方铅矿浮选的机械电化学行为[J]. 中国有色金属学报, 2002(5):1060-1064.HU Y H, SUN W, QIN W Q. Mechanics-electrochemistry action in PbS flotation[J]. Chinese Journal of Nonferrous Metals, 2002(5):1060-1064. doi: 10.3321/j.issn:1004-0609.2002.05.039

    CrossRef Google Scholar

    HU Y H, SUN W, QIN W Q. Mechanics-electrochemistry action in PbS flotation[J]. Chinese Journal of Nonferrous Metals, 2002(5):1060-1064. doi: 10.3321/j.issn:1004-0609.2002.05.039

    CrossRef Google Scholar

    [23] 魏以和, 周高云, 罗廉明. 捕收剂与磨矿环境对铅锌矿浮选的影响[J]. 金属矿山, 2007(6):34-38.WEI Y H, ZHOU G Y, LUO L M. Effect of collector and grinding environment on flotation of lead-zinc ore[J]. Metal Mine, 2007(6):34-38.

    Google Scholar

    WEI Y H, ZHOU G Y, LUO L M. Effect of collector and grinding environment on flotation of lead-zinc ore[J]. Metal Mine, 2007(6):34-38.

    Google Scholar

    [24] 覃文庆, 邱冠周, 徐竞, 等. 磨矿过程硫化矿物表面电化学性质及其对浮选的影响[J]. 矿产综合利用, 1999(3):7-11.QIN W Q, QIU G Z, XU J, et al. Surface electrochemical properties of sulfide minerals during grinding process and its influence on flotation[J]. Comprehensive utilization of minerals, 1999(3):7-11. doi: 10.3969/j.issn.1000-6532.1999.03.002

    CrossRef Google Scholar

    QIN W Q, QIU G Z, XU J, et al. Surface electrochemical properties of sulfide minerals during grinding process and its influence on flotation[J]. Comprehensive utilization of minerals, 1999(3):7-11. doi: 10.3969/j.issn.1000-6532.1999.03.002

    CrossRef Google Scholar

    [25] Deng Rong Dong, Liu Quan Jun, Hu Ting, et al. Influence of the addition of depressants during grinding on lead-zinc separation[J]. Advanced Materials Research, 2012, 1915.

    Google Scholar

    [26] 聂梦宇, 韩跃新, 李艳军. 磨矿介质对闪锌矿浮选行为的影响研究[J]. 金属矿山, 2019(2):163-167.NIE M Y, HAN Y X, LI Y J. Effects of grinding media on the flotation behaviors of sphalerite[J]. Metal Mine, 2019(2):163-167. doi: 10.19614/j.cnki.jsks.201902031

    CrossRef Google Scholar

    NIE M Y, HAN Y X, LI Y J. Effects of grinding media on the flotation behaviors of sphalerite[J]. Metal Mine, 2019(2):163-167. doi: 10.19614/j.cnki.jsks.201902031

    CrossRef Google Scholar

    [27] Xie Xian, Hou Kai, Tong Xiong, et al. Experimental research on lead-zinc separation of refractory lead-zinc ore[J]. Advanced Materials Research, 2014, 2986.

    Google Scholar

    [28] 李佳磊, 宋凯伟, 刘殿文, 等. 闪锌矿浮选的活化与去活化研究进展[J]. 过程工程学报, 2018, 18(1):11-19.LI J L, SONG K W, LIU D W, et al. Research progress on activation and deactivation of sphalerite flotation[J]. Chinese Journal of Process Engineering, 2018, 18(1):11-19. doi: 10.12034/j.issn.1009-606X.217183

    CrossRef Google Scholar

    LI J L, SONG K W, LIU D W, et al. Research progress on activation and deactivation of sphalerite flotation[J]. Chinese Journal of Process Engineering, 2018, 18(1):11-19. doi: 10.12034/j.issn.1009-606X.217183

    CrossRef Google Scholar

    [29] 王伊杰, 文书明, 刘建, 等. 铅锌分离中锌矿物的抑制剂和活化剂及作用机理[J]. 矿冶, 2012, 21(4): 21-25.WANG Y J , WEN S M, LIU J, et al. Introduction of zinc depressants & activators and their function mechanism in lead-zinc separation [J]. Mining and Metallurgy, 2012, 21(4): 21-25.

    Google Scholar

    WANG Y J , WEN S M, LIU J, et al. Introduction of zinc depressants & activators and their function mechanism in lead-zinc separation [J]. Mining and Metallurgy, 2012, 21(4): 21-25.

    Google Scholar

    [30] 冯忠伟. 富含可溶性盐高硫铅锌矿无碱浮选工艺研究[J]. 金属矿山, 2009(8):45-48.FENG Z W. Research on alkali-free flotation process of soluble salt-rich high sulfur lead-zinc ores[J]. Metal Mine, 2009(8):45-48. doi: 10.3321/j.issn:1001-1250.2009.08.013

    CrossRef Google Scholar

    FENG Z W. Research on alkali-free flotation process of soluble salt-rich high sulfur lead-zinc ores[J]. Metal Mine, 2009(8):45-48. doi: 10.3321/j.issn:1001-1250.2009.08.013

    CrossRef Google Scholar

    [31] 张心平. 氧化铅锌矿石浮选新药剂的应用研究[J]. 矿冶, 1996(3):40-45.ZHANG X P. Study on the application of new reagents for flotation of lead-zinc oxide ore[J]. Mining and Metallurgy, 1996(3):40-45.

    Google Scholar

    ZHANG X P. Study on the application of new reagents for flotation of lead-zinc oxide ore[J]. Mining and Metallurgy, 1996(3):40-45.

    Google Scholar

    [32] T·N·赫麦雷娃, 李长根, 崔洪山. 在被铜活化的闪锌矿黄药诱导浮选中亚硫酸氢钠的抑制作用机理[J]. 国外金属矿选矿, 2007(1):29-36.T·N·HERMEREVA, LI C G, CUI H S. Inhibition mechanism of sodium bisulfite in flotation induced by copper-activated sphalerite xanthate[J]. Foreign metal ore beneficiation, 2007(1):29-36.

    Google Scholar

    T·N·HERMEREVA, LI C G, CUI H S. Inhibition mechanism of sodium bisulfite in flotation induced by copper-activated sphalerite xanthate[J]. Foreign metal ore beneficiation, 2007(1):29-36.

    Google Scholar

    [33] Xie Xian, Hou Kai, Tong Xiong, et al. Experimental research on lead-zinc separation of refractory lead-zinc ore[J]. Advanced Materials Research, 2014, 886:55-58. doi: 10.4028/www.scientific.net/AMR.886.55

    CrossRef Google Scholar

    [34] CHEN Jian-hua, LI Yu-qiong, LONG Qiu-rong. Molecular structures and activity of organic depressants for marmatite, jamesonite and pyrite flotation[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(10):1993-1999. doi: 10.1016/S1003-6326(09)60407-6

    CrossRef Google Scholar

    [35] Silvestre M O, Pereira C A, Galery R, et al. Dispersion effect on a lead–zinc sulphide ore flotation[J]. Minerals Engineering, 2009, 22(9-10):752-758. doi: 10.1016/j.mineng.2008.12.009

    CrossRef Google Scholar

    [36] 冯其明, 周荣. 经铜离子活化后的某铅锌硫混合精矿中闪锌矿的浮选分离研究[J]. 矿冶工程, 2011, 31(5):32-34.FENG Q M, ZHOU R. Flotation separation of sphalerite from pb-zn-s bulk concentrate activated by cupric sulfate[J]. Mining and Metallurgical Engineering, 2011, 31(5):32-34. doi: 10.3969/j.issn.0253-6099.2011.05.008

    CrossRef Google Scholar

    FENG Q M, ZHOU R. Flotation separation of sphalerite from pb-zn-s bulk concentrate activated by cupric sulfate[J]. Mining and Metallurgical Engineering, 2011, 31(5):32-34. doi: 10.3969/j.issn.0253-6099.2011.05.008

    CrossRef Google Scholar

    [37] 王云, 张丽军. 复杂铜铅锌多金属硫化矿选矿试验研究[J]. 有色金属(选矿部分), 2007(6):1-6.WANG Y, ZHANG L J. Experimental study on mineral processing of complex multi-metals cu-pb-zn sulphide ore[J]. Non-Ferrous Metals (Mineral Processing Section), 2007(6):1-6.

    Google Scholar

    WANG Y, ZHANG L J. Experimental study on mineral processing of complex multi-metals cu-pb-zn sulphide ore[J]. Non-Ferrous Metals (Mineral Processing Section), 2007(6):1-6.

    Google Scholar

    [38] 郑伦, 张笃, 刘运财. 凡口矿高碱介质中闪锌矿浮选特性研究[J]. 矿冶工程, 2005(3):37-40.ZHENG L. ZHANG D, LIU Y C. The study on flotation properties of sphalerite in high alkalinity medium in fankou lead-zinc mine[J]. Mining and Metallurgical Engineering, 2005(3):37-40.

    Google Scholar

    ZHENG L. ZHANG D, LIU Y C. The study on flotation properties of sphalerite in high alkalinity medium in fankou lead-zinc mine[J]. Mining and Metallurgical Engineering, 2005(3):37-40.

    Google Scholar

    [39] Grano Stephen, Huang Guozhi. Improving the flotation behavior of a sulfide ore by controlling electrochemical interactions during grinding[J]. ECS Transactions, 2006, 2(3):9-20. doi: 10.1149/1.2195994

    CrossRef Google Scholar

    [40] Liang Yi Qiang, Zhang Xu Dong, Zhang Han Ping, et al. Using a new bulk flotation process to enhance the recovery of mineral beneficiation in a lead-zinc sulfide-oxide mixed ore[J]. Advanced Materials Research, 2013, 634-638:3545-3550. doi: 10.4028/www.scientific.net/AMR.634-638.3545

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(764) PDF downloads(98) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint