Citation: | YONGZHONGLADA, LU Junyong, SUOLANGDUNDAN, LUO Xinghai, ZHU Jianhua. Geochronology and Geochemistry of the Jiachadui Ganodiorite in Xizang and its Geological Implications[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 99-108, 134. doi: 10.3969/j.issn.1000-6532.2024.01.012 |
This is an article in the field of earth sciences. Magmatic rocks of the Gondwana Belt are one of the most popular problems in basic geological research on the Xizang-Qinghai Plateau. In this paper, we analyze the physical origin and regional tectonic properties of the Gachatai granite using LA-ICP-MS zircon U-Pb dating method, combined with the geochemical characteristics of the rocks and various graphical methods. The rocks are characterized by high alkali (average Na2O+K2O content of 6.26%), potassium (K2O/Na2O=1.03), low TiO2 (average 0.50%) and quasi-aluminous (aluminum saturation index A/CNK=0.933~1.033, average 0.991) high potassium-calcium-alkaline rock system. Rare earth elements show negative anomalies at Eu, which is the Eu-deficient type, and Ce has weak negative anomalies; trace elements show enrichment of large ion-parental elements Rb, Th, Nd, La and K; high field strength elements Nb, Ba, U, Ta, Ce, Sm and Ti are deficient; reflecting the mixed crust-mantle type of magma origin and the presence of subduction oceanic crustal melting. The zircon LA-ICP-MS U-Pb isotopic age is (345.3±1.8) Ma, and its formation age is Early Carboniferous. The analysis of the regional geological data suggests that this magmatic event is a product of the formation of the northern part of the eastern Gondwana continent after the breakup of the Rodinia supercontinent. The project points go to I-type granite, the discriminant diagrams indicate it’s formed from continental island arc, going through time before plate collision to co-collisional orogenic movement, which indicates a long period time of magmatic evolution; the rock geochemical characteristics show the environment of magmatic evolution changed from the start of island arc(primary island arc)-development(early stage island arc)-maturement(full-grown island arc).
[1] |
黄玉蓬, 邹金汐, 刘清强, 等. 滇西北中甸甭哥碱性杂岩体岩相学和矿物学特征及其地质意义[J]. 矿产综合利用, 2022(1):103-118.HUANG Y P, ZOU J X, LIU Q Q, et al. Petrographical and mineralogical characteristics of Bengge alkaline igneous complex in Zhongdian, Western Yunnan and its geological significance[J]. Multipurpose Utilization of Mineral Resources, 2022(1):103-118.
|
[2] |
翟明国. 花岗岩: 大陆地质研究的突破口以及若干关键科学问题——“岩石学报”花岗岩专辑代序[J]. 岩石学报, 2017, 33(5):1369-1380.ZHAI M G. Granites: leading study issue for continental evolution[J]. Acta Petrologica Sinica, 2017, 33(5):1369-1380.
|
[3] |
王孝磊. 花岗岩研究的若干新进展与主要科学问题[J]. 岩石学报, 2017, 33(5):1445-1458.WANG X L. Some new research progresses and main scientific problems of granitic rocks[J]. Acta Petrologica Sinica, 2017, 33(5):1445-1458.
|
[4] |
张旗. 有关埃达克岩实验应用中几个问题的探讨[J]. 岩石矿物学杂志, 2015, 34(2):257-270.ZHANG Q. A tentative discussion on the experimental study of adakite[J]. Acta Petrologica Et Mineralogica, 2015, 34(2):257-270. doi: 10.3969/j.issn.1000-6524.2015.02.012
|
[5] |
谭洪旗, 朱志敏, 周雄, 等. 川西九龙地区两期伟晶岩型稀有金属成矿作用[J]. 矿产综合利用, 2022(1):18-28.TAN H Q, ZHU Z M, ZHOU X, et al. Two periods rare metal mineralization of the pegmatite in Jiulong Area, Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2022(1):18-28.
|
[6] |
徐夕生, 贺振宇. 花岗岩研究进展[J]. 矿物岩石地球化学通报, 2012, 31(3):205-209.XU X S, HE Z Y. Progress in granite studies[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(3):205-209.
|
[7] |
张旗, 焦守涛, 李承东, 等. 花岗岩与大陆构造、岩浆热场与成矿[J]. 岩石学报, 2017, 33(5):1524-1540.ZHANG Q, JIAO S T, LI C D, et al. Granite and continental tectonics, magma thermal field and metallgenesis[J]. Acta Petrologica Sinica, 2017, 33(5):1524-1540.
|
[8] |
潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3):521-533.PAN G T, MO X X, HOU Z Q, et al. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution[J]. Acta Petrologica Sinica, 2006, 22(3):521-533.
|
[9] |
莫宣学, 潘桂棠. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6):43-51.MO X X, PAN G T. From the Tethys to the formation of the Qinghai-Tibet Plateau: constrained by tectono-magmatic events[J]. Earth Science Frontiers, 2006, 13(6):43-51.
|
[10] | Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211 |
[11] | Ma Y, Yang T, Yang Z, et al. Paleomagnetism and U-Pb zircon geochronology of Lower Cretaceous lava flows from the western Lhasa terrane: New constraints on the India-Asiacollision process and intracontinental deformation within Asia[J]. Journal of Geophysical Research:Solid Earth, 2014, 119:7404-7424. doi: 10.1002/2014JB011362 |
[12] | Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research. 2004.28(3): 353-370. |
[13] |
谭细娟, 郭超, 凤永刚, 等. 激光剥蚀系统气体流速变化对LA-ICP-MS锆石U-Pb定年精度的影响[J]. 岩矿测试, 2022, 41(4):554-563.TAN X J, GUO C, FENG Y G, et al. Effect of gas flow rates in laser ablation system on accuracy and precision of zircon U-Pb dating analysis by LA-ICP-MS[J]. Rock and Mineral Analysis, 2022, 41(4):554-563.
|
[14] | Irivine T N, Baragar W R A. A guide to the chemical classification of the common vocanic rock[J]. s. Canad. J. Earth. Sci., 1971(8):523-548. |
[15] | Middlemost E A K. Naming materials in magma-igneous rock system[J]. Earth Sci. Rev., 1994(37):215-224. |
[16] | Richwood P C. Boundary lines within petrologic diaframs which use oxides of major and minor elements[J]. Lithos, 1989(22):247-263. |
[17] | Sun S S, McDonough W F. Chemical and isotope systematics of oceanic basalt: implications for mantle composition and processes[J]. Sanders A D, Norry M J(Eds. ), Magmatism in the Ocean Basins: Geological Society Special Publication. 1989(24) pp. 313-345. |
[18] | Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8 Gaorogens: implications for a pre-Rodinia supercontinent[J]. Earth Science Review, 2002(59):125-162. |
[19] | Boynton W W. Cosmochemistry of the rare earth elements: Meteorite studies[M]. In: Henderson P, ed. Rare Earth Element Geochemistry: Developments in Geochemistry, Amstordam: Elsevier, 1984, 63-114. |
[20] | Rowley DB. Stable isotope-based paleoaltimetry: Theory and Validation[J]. Reviews in Mineralogy and Geochemistry. 2007, 66: 23-52. |
[21] |
吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16):1588-1604.WU Y B, ZHENG Y F. Zircon genetic mineralogy and its constraints on the interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16):1588-1604.
|
[22] | Whitney J a. The origin of granite: the role and source of water in the evolution of granitic magmas[J]. Geological Society of America Bulletin, 1988(100):1886-1897. |
[23] | Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999(46):605-626. |
[24] | Dostal J, et al. Volcanism in the central western Carpathians(Slovakia): basin-and range type rifting in the southern Laurussian margin[J]. Internal Journal of Earth Sciences, 2003, 92(1):27-35. doi: 10.1007/s00531-002-0307-6 |
[25] | Rudnick R L, Gao S. Composition of the continental crust[M]. In: Rudnick R L, eds. The Crust. Treaties on Geochemistry, 3. Oxford: Elsevier Pergamon, 2003, 1-64. |
[26] | CrawfordAJ, FalloonTJ, and EgginsS, The origin of island arc high-aluminabasalts[J]. Contributions to Mineralogy and Petrology, v. 97, 1987, 417–430. |
[27] | Zhu DC, MoXX, Zhao ZD, et al. Presence of Permian extension- and arc-typemagmatism in southern Tibet: Paleogeographic implications[J]. GSA Bulletin. 2010, 122: 979-993. |
[28] | Collis W J,et al. Nature and origin of A type gianites with paticular reference to Southeastern Australia[J]. Contrib. Miner. Petro., 1982(80):189-200. |
[29] |
江庆源. 西藏羌塘中部早石炭世弧火山岩的发现及其构造意义[D]. 吉林: 吉林大学. 2015.JIANG Q Y. The discovery and tectonic implications of early Carboniferous arc magmatism in central Qiangtang, Xizang Plateau[D]. Jilin: Jilin University. 2015.
|
[30] |
欧新锋, 杨锋, 康志强, 等. 西藏拉萨地块南部啊扎侵入体锆石U-Pb年龄、地球化学特征及其对新特提斯洋演化历史的指示[J]. 地质通报, 2022, 41(5):774-787.OU X F, YANG F, KANG Z Q, et al. Zircon U-Pb age and geochemical characteristics of the Azha intrusion in the southern Lhasa Block, Tibet and their indications for the evolutionary history of the Neo-Tethys[J]. Geological Bulletin of China, 2022, 41(5):774-787.
|
[31] |
李艳芳, 邱检生, 王睿强, 等. 冈底斯东段加查县丝波绒曲早侏罗-始新世复式岩体成因及其对构造演化的启示[J]. 地质学报, 2019, 93(12):3020-3046.LI Y F, QIU J S, WANG R Q, et al. Petrogenesis of the early Jurassic-Eocene composite pluton in Siborongqu, Gyaca County, eastern segment of the Gangdese Belt, and its tectonic implications[J]. Acta Geologica Sinica, 2019, 93(12):3020-3046.
|
[32] |
王文鲁, 等. 西藏南部冈底斯带东段晚白垩世中性侵入岩的成因矿物学研究: 对构建穿地壳岩浆系统的启示[J/OL]. 地学前缘. 2022: 1-39.WANG W L, et al. Research of genetic mineralogy of late Cretaceous intermediate intrusive rocks in the eastern segment of the Gangdese Belt, Southern Tibet: construction of a trans-crustal magma system[J/OL]. Earth Science Frontiers. 2022: 1-39.
|
[33] | Pin C, Paquette J L. A mantle-derived bimodal suite in the Hercynian Belt: Ndisotope and trace element evidence for a subduction-related rift origin of the late DevonianBrevenne metavolcanics, Massif Central (France)[J]. Contributions to Mineralogy and Petrology. 1997(129): 222–238. |
[34] | Zhu D C, Pan G T, Mo X X, et al. Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya: aprobable example of plume–lithosphere interaction[J]. Journal of Asian Earth Sciences. 2007(29): 320–335. |
[35] |
刘文灿, 万晓樵, 梁定益, 等. 江孜县幅、亚东县幅地质调查新成果及主要进展[J]. 地质通报, 2004, 23(5-6):444-450.LIU W C, WAN X Q, LIANG D Y, et al. New achievements and main progress in geological survey of the Gyangze and Yadong sheets[J]. Geological Bulletin of China, 2004, 23(5-6):444-450.
|
[36] |
潘桂棠, 朱弟成, 王立全, 等. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J]. 地学前缘, 2004, 11(4):371-382.PAN G T, ZHU D C, WANG L Q, et al. Bangong Lake-Nu River suture zone-the northern boundary of Gondwanaland: Evidence from geology and geophysics[J]. Earth Science Frontiers, 2004, 11(4):371-382.
|
[37] |
王立全, 等. 西藏冈底斯带石炭纪—二叠纪岛弧造山作用: 火山岩和地球化学证据[J]. 地质通报. 2008, 27(98): 1509-1534.WANG L Q, et al. Carboniferous-Permian island arc orogenesis in the Gangdise belt, Tibet, China: evidence from volcanic rocks and geochemistry[J]. Geological Bulletin of China, 2008, 27(98): 1509-1534.
|
[38] |
周士旭, 等. 藏东同普二叠纪高分异花岗岩的锆石U-Pb年龄和岩石成因[J]. 岩石学报. 2017, 33(8)-2509-22.ZHOU S X, et al. Zircon U-Pb age and petrogenesis of the Permian highly fractionated granites in Tongpu, eastern Tibet[J]. Acta Petrologica Sinica. 2017, 33(8)-2509-22.
|
Qinghai-Xizang plateau Geotectonics (after Yin and Harrison, 2000, Ma et al. 2014)
Geological sketch of the studying area
Outcrops and microscopic photographs of the Gacha mound body (Kf-potassium feldspar, bit-black mica, Amp-hornblende, Q-quartz, Pl-plagioclase feldspar)
SiO2-Na2O+K2O (after Irvine et al.,1971;Middlemost,1994) and SiO2-K2O (after Rickwood,1989)
Chondrite-normalized REE-pattein diagram for Jiachadui rock mass (from Boynton, 1984)
Primitive-mantle normalized spider diagram for Jiachadui rock mass(from Sun, et al.,1989)
LA-ICP-MS U-Pb zircon condia diagram from Jiachadui rock mass
Tectonic discriminant from Jiachadui rock mass
R1-R2 Tectonic discriminant from Jiachadui rock mass
(Y+Nb)-Rb Tectonic discriminant from Jiachadui rock mass