Citation: | Ma Lin, Gao Tianyu. Ratio Optimization of Slag Cementitious Material and the Properties of Filling Body[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 127-134. doi: 10.3969/j.issn.1000-6532.2023.06.019 |
This is an essay in the field of ceramics and composites. To solve the problems of high-cost for cement cementitious material and low strength of cement filling body at the later stage in a lead-zinc mine, abundant slag solid waste resources were adopted and low-cost slag cementitious materials were developed in this paper to meet the quality requirement of mine fillings. After physical and chemical analysis of tailings, slag and cement clinker, the physical and chemical analysis of tailings, slag and cement clinker was carried out. Then, through the filler slurry slump test and the exploration test of the ratio of slag cementitious material, it is determined that the slurry concentration satisfying the fluidity is about 70%, and the ratio of slag to cement clinker is 2~4. The strength, bleeding rate and coagulation characteristics of filling body with different proportions of slag cementitious materials were investigated by comprehensive test. The results show that the ratio of slag cementitious material is 75%~80% slag and 20%~25% cement clinker, the filling body can meet the filling quality requirements of 0.5 ~3.5 MPa compressive strength and the filling slurry bleeding rate is less than 5%.
[1] | 张国胜, 高谦, 郭斌, 等. 全尾砂胶凝材料开发及泡沫砂浆充填试验研究[J]. 金属矿山, 2020(12):74-80. ZHANG G S, GAO Q, GUO B, et al. Development of whole tailings cementitious material and experimental study on foam mortar filling[J]. Metal Mine, 2020(12):74-80. doi: 10.19614/j.cnki.jsks.202012012 ZHANG G S, GAO Q, GUO B, et al. Development of whole tailings cementitious material and experimental study on foam mortar filling[J]. Metal Mine, 2020(12): 74-80. doi: 10.19614/j.cnki.jsks.202012012 |
[2] | 杨晓炳, 王永定, 高谦, 等. 利用脱硫灰渣和粉煤灰开发充填胶凝材料[J]. 矿产综合利用, 2019(4):130-134. YANG X B, WANG Y D, GAO Q, et al. Research on a new cementitious materials with desulphurization ash and fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(4):130-134. doi: 10.3969/j.issn.1000-6532.2019.04.028 YANG X B, WANG Y D, GAO Q, et al. Research on a new cementitious materials with desulphurization ash and fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 130-134. doi: 10.3969/j.issn.1000-6532.2019.04.028 |
[3] | 胡敏, 彭丽, 郭娜, 等. 磷石膏- 炭化污泥胶凝材料力学性能试验研究[J]. 矿产综合利用, 2020(4):196-201. HU M, PENG L, GUO N, et al. Study on mechanical properties of phosphogypsum-carbonized sludge composite cementitious materials[J]. Multipurpose Utilization of Mineral Resources, 2020(4):196-201. doi: 10.3969/j.issn.1000-6532.2020.04.034 HU M, PENG L, GUO N, et al. Study on mechanical properties of phosphogypsum-carbonized sludge composite cementitious materials[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 196-201. doi: 10.3969/j.issn.1000-6532.2020.04.034 |
[4] | 梁晓杰, 常钧, 吴昊泽. 钢渣粉粒度对复合胶凝材料水化性能的影响[J]. 矿产综合利用, 2021(3):180-186. LIANG X J, CHANG J, WU H Z. Effect of particle size of steel slag powder on hydration performance of composite cementitious material[J]. Multipurpose Utilization of Mineral Resources, 2021(3):180-186. LIANG X J, CHANG J, WU H Z. Effect of particle size of steel slag powder on hydration performance of composite cementitious material[J]. Multipurpose Utilization of Mineral Resources, 2021(3): 180-186. |
[5] | 何良玉, 谯理格, 赵日煦, 等. 钢渣作胶凝材料和细集料制备高性能砂浆的研究[J]. 矿产综合利用, 2019(6):94-100. HE L Y, JIAO L G, ZHAO R X, et al. Study on preparation of high performance mortar using steel slag as cementitious material and fine aggregate[J]. Multipurpose Utilization of Mineral Resources, 2019(6):94-100. doi: 10.3969/j.issn.1000-6532.2019.06.021 HE L Y, JIAO L G, ZHAO R X, et al. Study on preparation of high performance mortar using steel slag as cementitious material and fine aggregate[J]. Multipurpose Utilization of Mineral Resources, 2019(6): 94-100. doi: 10.3969/j.issn.1000-6532.2019.06.021 |
[6] | 李夕兵, 刘冰. 硬岩矿山充填开采现状评述与探索[J]. 黄金科学技术, 2018, 26(4): 492-502. LI X B, LIU B. Review and exploration of current situation of backfill mining in hard rock mines[J]. Gold Science and Technology. 2018, 26(4): 492-502. |
[7] | 邢行, 杨仕教. 某铅锌矿超细全尾砂炼铅炉渣-水泥复合充填胶凝材料研究[J]. 硅酸盐通报, 2020, 39(7): 2232-2240. XING X, YANG S J. Study on the composite filling cementitious material for the lead smelting slag-cement with superfine full tailings in a lead zinc mine[J]. Bulletin of the Chinese Ceramic Society. 2020, 39(7): 2232-2240. |
[8] | 李兵, 杨仕教, 王洪武, 等. 某冶炼厂炼铅炉渣制备胶凝材料的试验研究[J]. 硅酸盐通报, 2014, 33(3):583-588. LI B, YANG S J, WANG H W, et al. Experimental research on producing cementing material using smelter's lead refinery slag[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(3):583-588. doi: 10.16552/j.cnki.issn1001-1625.2014.03.020 LI B, YANG S J, WANG H W, et al. Experimental research on producing cementing material using smelter's lead refinery slag[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(3): 583-588. doi: 10.16552/j.cnki.issn1001-1625.2014.03.020 |
[9] | 杨超, 郭利杰, 李文臣. 铜镍冶炼渣新型充填胶凝材料制备及其力学性能研究[J]. 矿业研究与开发, 2020, 40(8): 50-54. YANG C, GUO L J, LI W C. Preparation of new cementitious backfill materials with copper and nickel smelting slag and its mechanical properties[J]. Mining Research and Development. 2020, 40(8): 50-54. |
[10] | 朱庚杰, 齐兆军, 寇云鹏, 等. 分级细尾砂胶结充填强度和料浆流变性能试验研究[J]. 矿冶工程, 2020, 40(4): 18-22. ZHU G J, QI Z J, KOU Y P, et al. Experimental study on cemented backfill strength and slurry rheological properties of graded fine tailings[J]. Mining and Metallurgical Engineering. 2020, 40(4): 18-22. |
[11] | 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004. LI G X. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Publishing House Co. , Ltd. 2004. |
[12] | 陈杰, 梁杨芝, 王俊, 等. 高沙充填材料的输送性能研究[J]. 硅酸盐通报, 2020, 39(1): 194-198. CHEN J, LIANG Y Z, WANG J, et al. Research on transport characteristic of high sand content filling material[J]. Bulletin of the Chinese Ceramic Society. 2020, 39(1): 194-198. |
Grain size grading accumulative curve of the whole tailings sand
7 d strength of backfill with different cementitious materials, different cementitious ratios and slurry concentrations
3 d strength of backfill with different cementitious materials, different cementitious ratios and slurry concentrations
28 d strength of backfill with different cementitious materials, different cementitious ratios and slurry concentrations
Relationship between cement-sand ratio and bleeding rate
Relationship between cement-sand ratio and setting time