Citation: | Peng Liqun, Liu Runzhe, Lyu Lan, Fang Shu, Li Ning, Liu Lifen. Different Flotation Behaviors of Ca2+-Activated Quartz in the Presence of 18-Carbon Fatty Acids with Different Saturation[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 36-40. doi: 10.3969/j.issn.1000-6532.2023.06.006 |
This is an essay in the field of mineral processing engineering. In this study, sodium palmitate, sodium oleate and sodium linoleate were applied as collectors for the flotation of Ca2+-activated quartz. Results indicate that the three different sodium fatty acids have different flotation performances for Ca2+-activated quartz. It was found that the sodium linoleate was a better collector for collecting Ca2+-activated quartz than sodium oleate and sodium palmitate. To understand the different flotation behaviors of the three fatty acids, a comprehensive investigation has been conducted through zeta-potential measurements, FTIR characterization, free Ca2+ concentration measurement, surface tension measurement, and quantitative adsorption determination. It was found that the addition of sodium fatty acids decreased (more negatively charged) the zeta potentials of Ca2+-activated quartz, suggesting the adsorption of sodium fatty acids occurred on the collophanite surfaces. Characterization by FTIR spectra indicates that the calcium fatty acids are generated in the mineral pulp. The free Ca2+ concentration measurement and the surface tension measurement show that the sodium linoleate is not as sensitive to Ca2+ as sodium oleate and sodium palmitate, the good ability of resistance to hard water of sodium linoleate should be the reason that the sodium linoleate could float Ca2+-activated quartz better.
[1] | 张钊, 冯启明, 王维清, 等. 十二胺和十二烷基磺酸钠在长石石英表面的吸附[J]. 非金属矿, 2012, 35(4):8-12. ZHANG Z, FENG Q M, WANG W Q, et al. Adsorption of dodecylamine and sodium dodecyl sulfate on feldspar quartz surfaces[J]. Nonmetallic Mining, 2012, 35(4):8-12. doi: 10.3969/j.issn.1000-8098.2012.04.003 ZHANG Z, FENG Q M, WANG W Q, et al. Adsorption of dodecylamine and sodium dodecyl sulfate on feldspar quartz surfaces[J]. Nonmetallic Mining, 2012, 35(4): 8-12. doi: 10.3969/j.issn.1000-8098.2012.04.003 |
[2] | 周海玲, 刘永胜. 油酸钠在红柱石与粉石英表面的吸附机理[J]. 矿产综合利用, 2020(2):198-202. ZHOU H L, LIU Y S. Adsorption mechanism of sodium oleate on andalusite[J]. Multipurpose Utilization of Mineral Resources, 2020(2):198-202. doi: 10.3969/j.issn.1000-6532.2020.02.036 ZHOU H L, LIU Y S. Adsorption mechanism of sodium oleate on andalusite[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 198-202. doi: 10.3969/j.issn.1000-6532.2020.02.036 |
[3] | 李冬莲, 张亚东. 钙镁离子对胶磷矿浮选影响的溶液化学分析[J]. 矿产保护与利用, 2013(4):41-46. LI D L, ZHANG Y D. Solution chemical analysis of the effect of calcium and magnesium ions on the flotation of colophony[J]. Conservation and Utilization of Mineral Resources, 2013(4):41-46. doi: 10.3969/j.issn.1001-0076.2013.04.011 LI D L, ZHANG Y D. Solution chemical analysis of the effect of calcium and magnesium ions on the flotation of colophony[J]. Conservation and Utilization of Mineral Resources, 2013(4): 41-46. doi: 10.3969/j.issn.1001-0076.2013.04.011 |
[4] | Sun Z, Willis F, Chen J. The SiO2-H2O interface and effects on quartz activation in flotation system[J]. Transactions of Nonferrous Metals Society of China, 1992(2):16-22. |
[5] | Kou J, Tao D, Xu G. Fatty acid collectors for phosphate flotation and their adsorption behavior using QCM-D[J]. Int J Miner Process, 2010, 95(1-4):1-9. doi: 10.1016/j.minpro.2010.03.001 |
[6] | 毕艳兰. 油脂化学[M]. 北京: 化学工业出版社, 2005. BI Y L. Oleochemistry [M]. Beijing: Chemical Industry Press, 2005. |
[7] | 王淀佐, 胡岳华. 浮选溶液化学[M]. 长沙: 湖南科学技术出版社, 1988. WANG D Z, HU Y H. Chemistry of flotation solutions [M]. Changsha: Hunan Science and Technology Press, 1988. |
[8] | 冯其明, 赵岩森, 张国范, 等. 油酸钠在赤铁矿及磷灰石表面的吸附机理[J]. 中国有色金属学报, 2012, 22(10):2902-2907. FENG Q M, ZHAO Y S, ZHANG G F, et al. Adsorption mechanism of sodium oleate on the surface of hematite and apatite[J]. China Journal of Nonferrous Metals, 2012, 22(10):2902-2907. doi: 10.19476/j.ysxb.1004.0609.2012.10.029 FENG Q M, ZHAO Y S, ZHANG G F, et al. Adsorption mechanism of sodium oleate on the surface of hematite and apatite[J]. China Journal of Nonferrous Metals, 2012, 22(10): 2902-2907. doi: 10.19476/j.ysxb.1004.0609.2012.10.029 |
[9] | Lu Y, Drelich J, Miller J D. Oleate adsorption at an apatite surface studied by ex-situ FTIR internal reflection spectroscopy[J]. J Colloid Interface Sci, 1998, 202:462-476. doi: 10.1006/jcis.1998.5466 |
[10] | 李冬莲, 黄星, 张亚东. 钙镁离子对胶磷矿浮选影响机理探讨[J]. 中国矿业, 2013, 22(12):6-8. LI D L, HUANG X, ZHANG Y D. Discussion on the mechanism of calcium and magnesium ions' influence on the flotation of colophony[J]. China Mining Industry, 2013, 22(12):6-8. doi: 10.3969/j.issn.1004-4051.2013.12.002 LI D L, HUANG X, ZHANG Y D. Discussion on the mechanism of calcium and magnesium ions' influence on the flotation of colophony[J]. China Mining Industry, 2013, 22(12): 6-8. doi: 10.3969/j.issn.1004-4051.2013.12.002 |
[11] | 黄齐茂, 马雄伟, 肖碧鹏, 等. 氨基酸型磷矿低温浮选捕收剂的合成与应用[J]. 化工矿物与加工, 2009(7):1-4. HUANG Q M, MA X W, XIAO B P, et al. Synthesis and application of amino acid-type phosphorite low-temperature flotation traps[J]. Chemical Minerals and Processing, 2009(7):1-4. doi: 10.3969/j.issn.1008-7524.2009.07.001 HUANG Q M, MA X W, XIAO B P, et al. Synthesis and application of amino acid-type phosphorite low-temperature flotation traps[J]. Chemical Minerals and Processing, 2009, (7): 1-4. doi: 10.3969/j.issn.1008-7524.2009.07.001 |
XRD pattern of quartz sample
Flotation recovery of quartz as a function of solution pH value by different collectors with 5.5×10-4 mol/L Ca2+
Species distribution of Ca2+ at 2×10-4 mol/L
Flotation recovery of quartz as a function of collectors concentration with 5.5×10-4 mol/L Ca2+ at pH value=10
Zeta potential of quartz as a function of pH value before and after reacting with different sodium fatty acids at the concentration of 3×10-5 mol/L with and without 5.5×10-4 mol/L Ca2+
Infrared spectra of quartz before and after interaction with Ca2+ and sodium fatty acids
Free Ca2+ concentration of the sodium fatty acid solution as a function of pH value
Surface tension of sodium fatty acid solution (2×10-4 mol/L) before and after reacting with Ca2+ (5.5×10-4 mol/L)