Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 No. 5
Article Contents

Jia Zipei, Song Xiangyu, Wang Wen, Xu Laifu, Zhang Hongtao. Advances in the Separation of Pyrite and Arsenopyrite by Oxidative Flotation[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 112-119. doi: 10.3969/j.issn.1000-6532.2023.05.020
Citation: Jia Zipei, Song Xiangyu, Wang Wen, Xu Laifu, Zhang Hongtao. Advances in the Separation of Pyrite and Arsenopyrite by Oxidative Flotation[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 112-119. doi: 10.3969/j.issn.1000-6532.2023.05.020

Advances in the Separation of Pyrite and Arsenopyrite by Oxidative Flotation

More Information
  • This is an essay in the field of mineral processing engineering. Pyrite and arsenopyrite are common associated sulfides. Because their crystal structures and surface properties are very similar, their flotation separation has been an important research topic. In the flotation process of arsenic and sulfur minerals, the oxidation reaction is easy to occur in different degrees. The oxidation treatment technology is used to strengthen the oxidation difference between the two minerals and to change the inherent flotation behavior of the minerals, the separation of arsenopyrite from pyrite can be realized. Based on the self-crystal structure and surface properties of pyrite and arsenopyrite, the research status and progress of separation technology and mechanism of pyrite and arsenopyrite in oxidative flotation are introduced in detail, the research direction is analyzed and prospected, and it is hoped to provide some reference for the green and efficient flotation separation of arsenic and sulfur minerals.

  • 加载中
  • [1] 铁颖, 熊召华, 胡梦忠, 等. 青海某微细粒浸染型难处理金矿石工艺矿物学研究[J]. 黄金, 2022, 43(4):43-47. TIE Y, XIONG Z H, HU M Z, et al. Process mineralogy of a microfine disseminated refractory gold ore from Qinghai[J]. Gold, 2022, 43(4):43-47.

    Google Scholar

    TIE Y, XIONG Z H, HU M Z, et al. Process mineralogy of a microfine disseminated refractory gold ore from Qinghai[J]. Gold, 2022, 43(4): 43-47.

    Google Scholar

    [2] 肖坤明. 云南某低硫化物金矿可选性实验研究[J]. 矿产综合利用, 2019(2):57-59. XIAO K M. Experimental study on beneficiation of a low sulfide gold ore in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2019(2):57-59.

    Google Scholar

    XIAO K M. Experimental study on beneficiation of a low sulfide gold ore in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2019(2): 57 -59.

    Google Scholar

    [3] 王广伟, 谢卓宏, 蒲江东. 某极难选金矿石工艺矿物学研究[J]. 矿产综合利用, 2019(6):69-73. WANG G W, XIE Z H, PU J D. Study on process mineralogy of an extremely refractory gold ore[J]. Multipurpose Utilization of Mineral Resources, 2019(6):69-73.

    Google Scholar

    WANG G W, XIE Z H, PU J D. Study on process mineralogy of an extremely refractory gold ore[J]. Multipurpose Utilization of Mineral Resources, 2019(6): 69-73.

    Google Scholar

    [4] Allison S A, Goold L A, Nicol M J, et al. A determination of the products of reaction betweer various sulfide minerals and aqueous xanthate solution, and a correlation of the products with electrode rest potentials[J]. Metallurgical and Materials Transactions B, 1972, 3(10):2613.

    Google Scholar

    [5] 黄宇松, 郑永兴, 宁继来, 等. 含砷硫铁矿浮选分离研究现状与进展[J]. 矿冶, 2021(2):7-14. HUANG Y S, ZHENG Y X, NING J L, et al. Research status and development of flotation separation of arsenic-bearing pyrite[J]. Mining and Metallurgy, 2021(2):7-14.

    Google Scholar

    HUANG Y S, ZHENG Y X, NING J L, et al . Research status and development of flotation separation of arsenic-bearing pyrite[J]. Mining and Metallurgy, 2021(2): 7-14.

    Google Scholar

    [6] 赵婉辰, 卢军燕, 孙明明. 黄铁矿尾矿泡沫混凝土力学性能和水化特征[J]. 矿产综合利用, 2022(3):32-36. ZHAO W C, LU J Y, SUN M M. Research on mechanical properties and hydration characteristics of pyrite tailings foam concrete[J]. Multipurpose Utilization of Mineral Resources, 2022(3):32-36.

    Google Scholar

    ZHAO W C, LU J Y, SUN M M. Research on mechanical properties and hydration characteristics of pyrite tailings foam concrete[J]. Multipurpose Utilization of Mineral Resources, 2022 (3): 32-36.

    Google Scholar

    [7] 李丹龙, 赵艺, 孟宇航, 等. 一种新型阻垢剂对黄铁矿浮选的应用[J]. 矿产综合利用, 2019(5):52-55. LI D L, ZHAO Y, MENG Y H, et al. Research on the application of a new type scale inhibitor on the flotation of pyrite[J]. Multipurpose Utilization of Mineral Resources, 2019(5):52-55.

    Google Scholar

    LI D L, ZHAO Y, MENG Y H, et al. Research on the application of a new type scale inhibitor on the flotation of pyrite[J]. Multipurpose Utilization of Mineral Resources, 2019(5): 52-55.

    Google Scholar

    [8] 朱一民, 周菁. 2018年浮选药剂的进展[J]. 矿产综合利用, 2019(4):1-10. ZHU Y M, ZHOU J. The development of flotation reagent in 2018[J]. Multipurpose Utilization of Mineral Resources, 2019(4):1-10.

    Google Scholar

    ZHU Y M, ZHOU J. The development of flotation reagent in 2018[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 1-10.

    Google Scholar

    [9] 罗宿星、陈华仕、牟青松, 等. 黄铁矿的吸附性能研究现状及进展[J]. 矿产综合利用, 2020(5):26-33. LUO S X, CHEN H S, MU Q S, et al. Research situation and progress of adsorption properties of pyrite[J]. Multipurpose Utilization of Mineral Resources, 2020(5):26-33.

    Google Scholar

    LUO S X, CHEN H S, MU Q S, et al. Research situation and progress of adsorption properties of pyrite[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 26-33.

    Google Scholar

    [10] Burns R G, Vaughan D J. Interpretation of the reflectivity behavior of ore minerals[J]. American Mineralogist:Journal of Earth and Planetary Materials, 1970, 55(9-10):1576.

    Google Scholar

    [11] Klein C, Hurlbut C S, Dana J D. Manual of Mineralogy [J]. Manual of Mineralogy, 1993

    Google Scholar

    [12] 李广明, 张洪恩, 臼井进. 毒砂和黄铁矿颗粒的表面化学组成[J]. 有色金属, 1992(2):25-28. LI G M, ZHANG H E, JIU J J. Sureface chemical comsitions of arsenopyrite and pyrite particless[J]. Nonferrous Metals, 1992(2):25-28.

    Google Scholar

    LI G M, ZHANG H E, JIU J J. Sureface chemical comsitions of arsenopyrite and pyrite particless[J]. Nonferrous Metals, 1992(2): 25-28.

    Google Scholar

    [13] Rimstidt J D, Vaughan D J. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism[J]. Geochimica et Cosmochimica Acta, 2003, 67(5):873. doi: 10.1016/S0016-7037(02)01165-1

    CrossRef Google Scholar

    [14] Eggleston C M, Ehrhardt J J, Stumm W. Surface structural controls on pyrite oxidation kinetics: An XPS-UPS, STM, and modeling study[J]. American Mineralogist, 1996, 81(9-10):1036. doi: 10.2138/am-1996-9-1002

    CrossRef Google Scholar

    [15] 涂志红. 黄铁矿氧化过程中硫形态转化及其表面氧化电化学研究[D]. 广州: 华南理工大学, 2018.

    Google Scholar

    TU Z H. Studies of sulfur transformation in oxidation of pyrite and surface electrochemistry of pyrite oxidation[D]. Guangzhou: South China University of Technology, 2018.

    Google Scholar

    [16] Tu Z, Wan J, Guo C, et al. Electrochemical oxidation of pyrite in pH 2 electrolyte[J]. Electrochimica Acta, 2017, 239:25. doi: 10.1016/j.electacta.2017.04.049

    CrossRef Google Scholar

    [17] Biegler T, Swift D. Anodic behaviour of pyrite in acid solutions[J]. Electrochimica Acta, 1979, 24(4):415. doi: 10.1016/0013-4686(79)87029-2

    CrossRef Google Scholar

    [18] Tao D, Richardson P, Luttrell G, et al. Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes[J]. Electrochimica Acta, 2003, 48(24):3615. doi: 10.1016/S0013-4686(03)00482-1

    CrossRef Google Scholar

    [19] Stephen W I. F. Basolo and R. G. Pearson, mechanisms of inorganic reactions: a study of metal complexes in solution, 2nd edn. : j. wiley and sons, inc., new york, 1967, xi+701 pp., price 144 s[J]. Analytica Chimica Acta, 1969, 44(2):474.

    Google Scholar

    [20] Williamson M A, Rimstidt J D. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation[J]. Geochimica Et Cosmochimica Acta, 1994, 58(24):5443. doi: 10.1016/0016-7037(94)90241-0

    CrossRef Google Scholar

    [21] Iii G W L. Pyrite oxidation and reduction: Molecular orbital theory considerations [J]. Geochimica et Cosmochimica Acta, 1987.

    Google Scholar

    [22] 赵清平, 蓝卓越, 童雄. 铜离子对闪锌矿, 黄铁矿浮选的选择性活化机理研究[J]. 矿产综合利用, 2021(3):27-38. ZHAO Q P, LAN Z Y, TONG X. Activation mechanism of selective flotation of spahalerite and pyrite by copper[J]. Multipurpose Utilization of Mineral Resources, 2021(3):27-38.

    Google Scholar

    ZHAO Q P, LAN Z Y, TONG X. Activation mechanism of selective flotation of spahalerite and pyrite by copper [J]. Multipurpose Utilization of Mineral Resources, 2021(3): 27-38.

    Google Scholar

    [23] 王成勇, 陈鹏, 谭金龙, 等. 基于密度泛函理论的水对黄铁矿和煤表面润湿性机理研究[J]. 矿产综合利用, 2022(1):157-163. WANG C Y, CHEN P, TAN J L, et al. Study on water wettability mechanism of pyrite and coal surfaces based on density functional theory[J]. Multipurpose Utilization of Mineral Resources, 2022(1):157-163.

    Google Scholar

    WANG C Y, CHEN P, TAN J L, et al. Study on water wettability mechanism of pyrite and coal surfaces based on density functional theory[J]. Multipurpose Utilization of Mineral Resources, 2022 (1): 157-163.

    Google Scholar

    [24] Zhu J, Xian H, Lin X, et al. Surface structure-dependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution[J]. Geochimica Et Cosmochimica Acta, 2018, 228:259. doi: 10.1016/j.gca.2018.02.050

    CrossRef Google Scholar

    [25] Buckley A N, Walker G W. The surface composition of arsenopyrite exposed to oxidizing environments[J]. Applied Surface Science, 1988, 35(2):227. doi: 10.1016/0169-4332(88)90052-9

    CrossRef Google Scholar

    [26] Nesbitt H, Muir I. Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air[J]. Mineralogy and Petrology, 1998, 62(1):123.

    Google Scholar

    [27] Costa M, Do Rego A B, Abrantes L. Characterization of a natural and an electro-oxidized arsenopyrite: a study on electrochemical and X-ray photoelectron spectroscopy[J]. International Journal of Mineral Processing, 2002, 65(2):83. doi: 10.1016/S0301-7516(01)00059-X

    CrossRef Google Scholar

    [28] Walker F P, Schreiber M E, Rimstidt J D. Kinetics of arsenopyrite oxidative dissolution by oxygen[J]. Geochimica et cosmochimica Acta, 2006, 70(7):1668. doi: 10.1016/j.gca.2005.12.010

    CrossRef Google Scholar

    [29] 邓仕明. 砷黄铁矿氧化及磷基铁膜钝化研究[D]. 绵阳: 西南科技大学, 2017.

    Google Scholar

    DENG S M. Study on arsenopyrite oxidation and iron phosphate coating on arsenopyrite[D]. Mianyang: Southwest University, 2017.

    Google Scholar

    [30] Schaufuss A G, Nesbitt H W, Scaini M J, et al. Reactivity of surface sites on fractured arsenopyrite (FeAsS) toward oxygen[J]. American Mineralogist, 2000, 85(11-12):1754. doi: 10.2138/am-2000-11-1219

    CrossRef Google Scholar

    [31] Corkhill C L, Warren M C, Vaughan, et al. Investigation of the electronic and geometric structures of the (110) surfaces of arsenopyrite (FeAsS) and enargite (Cu3AsS4) [J]. Mineralogical Magazine, 2011, 75 (1) .

    Google Scholar

    [32] Reactivity of surface sites on fractured arsenopyrite (FeAsS) toward oxygen [J]. American Mineralogist, 2000, 85 (11-12): 1754.

    Google Scholar

    [33] Manjiao C, Zhengfu Z, Xinjun H, et al. Oxidation mechanism of the arsenopyrite surface by oxygen with and without water: Experimental and theoretical analysis[J]. Applied Surface Science, 2022, 573:151574. doi: 10.1016/j.apsusc.2021.151574

    CrossRef Google Scholar

    [34] 李洪祥, 代淑娟, 赵英杰. 氧化对毒砂可浮性的影响[J]. 矿冶工程, 2021, 41(6):10-12. LI H X, DAI S J, ZHAO Y J. Effect of oxidation on floatability of arsenopyrite[J]. Mining and Metallurgical Engineering, 2021, 41(6):10-12.

    Google Scholar

    LI H X, DAI S J, ZHAO Y J. Effect of oxidation on floatability of arsenopyrite[J]. Mining and Metallurgical Engineering, 2021, 41(6): 10-12.

    Google Scholar

    [35] Chen J H, Liu J, Li Y Q. Flotation separation of pyrite from arsenopyrite in the presence of oxidants [J]. Separation Science & Technology, 2018: 1.

    Google Scholar

    [36] 吕炳军. 黄铁矿和毒砂的浮选分离实验研究[D]. 赣州: 江西理工大学, 2009.

    Google Scholar

    LV B J. Study on flotation separation of pyrite and arsenopyrite[D]. Ganzhou: Jiangxi University of Science and Technology, 2009.

    Google Scholar

    [37] Monte M, Dutra A, Albuquerque C, et al. The influence of the oxidation state of pyrite and arsenopyrite on the flotation of an auriferous sulphide ore[J]. Minerals Engineering, 2002, 15(12):1113. doi: 10.1016/S0892-6875(02)00177-2

    CrossRef Google Scholar

    [38] 张磊, 戴惠新, 杜五星. 铜锌硫化矿分离工艺现状[J]. 矿产综合利用, 2019(1):1-6. ZHANG L, DAI H X, DU W X. Research progress of copper-zinc sulfide ore separation technology[J]. Multipurpose Utilization of Mineral Resources, 2019(1):1-6.

    Google Scholar

    ZHANG L, DAI H X, DU W X . Research progress of copper-zinc sulfide ore separation technology[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 1-6.

    Google Scholar

    [39] 王锐刚, 郭方峥, 杨春. 黄铁矿废渣/H2O2体系处理造纸废水的研究[J]. 矿产综合利用, 2019(6):89-93. WANG R G, GUO F Z, YANG C. Treatment of papermaking wastewater in pyrite slag/H2O2 system[J]. Multipurpose Utilization of Mineral Resources, 2019(6):89-93.

    Google Scholar

    WANG R G, GUO F Z, YANG C. Treatment of papermaking wastewater in pyrite slag/H2O2 system[J]. Multipurpose Utilization of Mineral Resources, 2019(6): 89-93.

    Google Scholar

    [40] 许大洪. 长坡选矿厂锌浮选尾矿综合回收研究[D]. 南宁: 广西大学, 2015.

    Google Scholar

    XU D H. Study on comprehensive recovery of zinc flotation tailings in Changpo concentrator[D]. Nanning: Guangxi University, 2015.

    Google Scholar

    [41] Yu L, Liu Q, Li S, et al. Depression mechanism involving Fe3+ during arsenopyrite flotation[J]. Separation and Purification Technology, 2019, 222:109. doi: 10.1016/j.seppur.2019.04.007

    CrossRef Google Scholar

    [42] Dong Z, Zhu Y, Han Y, et al. Chemical oxidation of arsenopyrite using a novel oxidant—Chlorine dioxide[J]. Minerals Engineering, 2019, 139:105863. doi: 10.1016/j.mineng.2019.105863

    CrossRef Google Scholar

    [43] Chandraprabha M N, Natarajan K A, Somasundaran P. Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus ferrooxidans[J]. International Journal of Mineral Processing, 2005, 75(1-2):113. doi: 10.1016/j.minpro.2004.08.014

    CrossRef Google Scholar

    [44] Zhang S, Yang H, Ma P, et al. Column bio-oxidation of low-grade refractory gold ore containing high-arsenic and high-sulfur: Insight on change in microbial community structure and sulfide surface corrosion[J]. Minerals Engineering, 2022, 175:107201. doi: 10.1016/j.mineng.2021.107201

    CrossRef Google Scholar

    [45] Beattie M, Poling G. A study of the surface oxidation of arsenopyrite using cyclic voltammetry[J]. International Journal of Mineral Processing, 1987, 20(1-2):87. doi: 10.1016/0301-7516(87)90019-6

    CrossRef Google Scholar

    [46] 欧乐明, 冯其明, 卢毅屏, 等. 硫化矿物浮选体系中外控电位电极与矿物颗粒间的电偶腐蚀作用及其浮选[J]. 科学技术与工程, 2004(8):668-671. OU L M, FENG Q M, LU Y P, et al. Galvanic corrosion between external potential-control electrode and mineral in the flotation system of sulfide minerals and its significance on flotation[J]. Science Technology and Engineer, 2004(8):668-671. doi: 10.3969/j.issn.1671-1815.2004.08.008

    CrossRef Google Scholar

    OU L M, FENG Q M, LU Y P, et al. Galvanic corrosion between external potential-control electrode and mineral in the flotation system of sulfide minerals and its significance on flotation[J]. Science Technology and Engineer, 2004, (8): 668-671. doi: 10.3969/j.issn.1671-1815.2004.08.008

    CrossRef Google Scholar

    [47] 胡茂圃. 腐蚀电化学[M]. 北京: 北京科技大学, 1991.

    Google Scholar

    HU M P. Corrosion electrochemistry[M]. Beijing: University of Science and Technology Beijing, 1991.

    Google Scholar

    [48] 邓玉珍. 电化学处理及矿物浮选[J]. 国外金属矿选矿, 1996, 33(2):35-39. DENG Y Z. Electrochemical treatment and mineral flotation[J]. Metallic Ore Dressing Abroad, 1996, 33(2):35-39.

    Google Scholar

    DENG Y Z. Electrochemical treatment and mineral flotation[J]. Metallic Ore Dressing Abroad, 1996, 33 (2): 35-39.

    Google Scholar

    [49] 王荣生. 外控电位电化学处理黄铁矿的浮选[J]. 矿冶, 2004, 13(2):28-32. WANG R S. Flotation of pyrite pretreated by electrochenmical ways under externally controlled voltages[J]. Mining and Metallurgy, 2004, 13(2):28-32.

    Google Scholar

    WANG R S. Flotation of pyrite pretreated by electrochenmical ways under externally controlled voltages[J]. Mining and Metallurgy, 2004, 13 (2): 28-32.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(1461) PDF downloads(301) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint