Citation: | Jin Jianping, Che Wenfang, He Yaqing, Liu Shupeng, Li Fubo, Yang Jianbo, Chen Binglong. Process Mineralogy of Molybdenum Ore with High Oxidation Rate in Sandaozhuang Mining Area[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 93-99, 126. doi: 10.3969/j.issn.1000-6532.2023.05.017 |
This is an essay in the field of process mineralogy. By means of chemical multi-element analysis, chemical phase analysis, optical microscope and automatic mineral parameter analysis system (MLA), the systematic research on process mineralogy of the molybdenum ore with high oxidation rate in Sandaozhuang mining area has been done in this study, which mainly include mineralogical factors affecting molybdenum recovery, such as ore chemical composition, mineral composition, occurrence state of molybdenum and tungsten and embedding characteristics of target minerals. The results show that the content of Mo in the ore is 0.06%, and the content of WO3 in the ore is 0.10%. The main metal minerals in the ore are pyrite, magnetite, molybdenite, scheelite and chalcopyrite. Nonmetallic minerals are mainly garnet, quartz, diopside and amphibole formed by alteration, and contain a small number of carbonate minerals, plagioclase, apatite, fluorite and epidote formed by alteration. The phase analysis of molybdenum in the raw ore shows that the proportion of molybdenum sulfide in the raw ore is 72.13%, and the proportion of molybdenum oxide is 27.87%. The carrier mineral of molybdenum oxide is mainly scheelite. This part of molybdenum will be recovered with the recovery of tungsten, so it will affect the recovery rate of molybdenum concentrate. Although the Cu content in the ore is low (0.016%), some chalcopyrite has good floatability, which will make the copper content in molybdenum concentrate exceed the standard. Therefore, the selection of copper inhibitors and the determination of process structure are also the focus of the beneficiation and recovery of the ore.
[1] | 张亮, 杨卉芃, 冯安生, 等. 全球钼矿资源现状及市场分析[J]. 矿产综合利用, 2019(3):11-16. ZHANG L, YANG H P, FENG A S, et al. Study on general situation and analysis of supply and demand of global molybdenum resource[J]. Multipurpose Utilization of Mineral Resources, 2019(3):11-16. ZHANG L, YANG H P, FENG A S, et al. Study on general situation and analysis of supply and demand of global molybdenum resource[J]. Multipurpose Utilization of Mineral Resources, 2019(3): 11-16. |
[2] | 陈丽娟, 李治杭, 姚辉, 等. 辉钼矿浮选药剂研究进展[J]. 现代矿业, 2022, 38(2):19-23+27. CHEN L J, LI Z H, YAO H, et al. Research progress of molybdenite flotation reagents[J]. Modern Mining, 2022, 38(2):19-23+27. CHEN L J, LI Z H, YAO H, et al. Research progress of molybdenite flotation reagents[J]. Modern Mining, 2022, 38(2): 19-23+27. |
[3] | 刘翠华. 钼矿石的物相分析及其氧化率[J]. 山西冶金, 2018, 41(2):8-10+14. LIU C H. Phase analysis and oxidation ratio for molybdenum ores[J]. Shanxi Metallurgy, 2018, 41(2):8-10+14. LIU C H. Phase analysis and oxidation ratio for molybdenum ores[J]. Shanxi Metallurgy, 2018, 41(2): 8-10+14. |
[4] | 刘明实, 万选志, 刘子龙, 等. 某高氧化率铜矿石的选矿实验研究[J]. 矿产综合利用, 2019(6):24-27. LIU M S, WAN X Z, LIU Z L, et al. Experimental study on beneficiation of the high mud and high oxidation rate copper ore[J]. Multipurpose Utilization of Mineral Resources, 2019(6):24-27. LIU M S, WAN X Z, LIU Z L, et al. Experimental study on beneficiation of the high mud and high oxidation rate copper ore[J]. Multipurpose Utilization of Mineral Resources, 2019(6): 24-27. |
[5] | 李国尧. 某高氧化率铜矿石浮选实验[J]. 现代矿业, 2017, 33(12):102-104. LI G Y. Flotation test on high oxidation copper ore[J]. Modern Mining, 2017, 33(12):102-104. doi: 10.3969/j.issn.1674-6082.2017.12.026 LI G Y. Flotation test on high oxidation copper ore[J]. Modern Mining, 2017, 33(12): 102-104. doi: 10.3969/j.issn.1674-6082.2017.12.026 |
[6] | 王伊杰, 文书明, 刘丹, 等. 云南某高氧化率混合铜矿石选矿实验[J]. 现代矿业, 2013, 29(5):20-22. WANG Y J, WEN S M, LIU D, et al. Experimental research on beneficiation of a Yunnan mixed copper ore with a high oxidation rate[J]. Modern Mining, 2013, 29(5):20-22. WANG Y J, WEN S M, LIU D, et al. Experimental research on beneficiation of a Yunnan mixed copper ore with a high oxidation rate[J]. Modern Mining, 2013, 29(5): 20-22. |
[7] | 张成强, 李洪潮, 张颖新, 等. 我国复杂难选钼矿资源选矿技术进展[J]. 中国矿业, 2009, 18(10):64-66+86. ZHANG C Q, LI H C, ZHANG Y X, et al. Progress in China's beneficiation technology for complex refractory molybdenum ore[J]. Modern Mining, 2009, 18(10):64-66+86. ZHANG C Q, LI H C, ZHANG Y X, et al. Progress in China's beneficiation technology for complex refractory molybdenum ore[J]. Modern Mining, 2009, 18(10): 64-66+86. |
[8] | 张文, 田承涛, 翁孝卿, 等. 矿物解离分析系统在磷石膏工艺矿物学研究中的应用[J]. 矿产综合利用, 2022(1):205-210. ZHANG W, TIAN C T, WENG X Q, et al. Research on the process mineralogy of phosphogypsum using mineral liberation analysis system[J]. Multipurpose Utilization of Mineral Resources, 2022(1):205-210. ZHANG W, TIAN C T, WENG X Q, et al. Research on the process mineralogy of phosphogypsum using mineral liberation analysis system[J]. Multipurpose Utilization of Mineral Resources, 2022(1): 205-210. |
[9] | 秦玉芳, 马莹, 李娜, 等. 白云鄂博尾矿稀土的工艺矿物学研究[J]. 矿冶, 2021, 30(6):120-126. QIN Y F, MA Y, LI N, et al. Study on the process mineralogy of rare earth in Bayan Obo tailings[J]. Mining and Metallurgy, 2021, 30(6):120-126. QIN Y F, MA Y, LI N, et al. Study on the process mineralogy of rare earth in Bayan Obo tailings[J]. Mining and Metallurgy, 2021, 30(6): 120-126. |
[10] | 赵玉卿, 应永朋, 熊艳, 等. BPMA在某低品位铌钽矿工艺矿物学研究中的应用[J]. 矿产综合利用, 2021(5):129-134. ZHAO Y Q, YING Y P, XIONG Y, et al. Application of BPMA in process mineralogy of a low-grade Nb-Ta ore[J]. Multipurpose Utilization of Mineral Resources, 2021(5):129-134. ZHAO Y Q, YING Y P, XIONG Y, et al. Application of BPMA in process mineralogy of a low-grade Nb-Ta ore[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 129-134. |
[11] | 傅开彬, 徐信, 侯普尧, 等. 朝鲜某隐晶质石墨工艺矿物学及可浮性研究[J]. 金属矿山, 2021(3):148-152. FU K B, XU X, HOU P Y, et al. Study on process mineralogy and floatability of a cryptocrystalline graphite in North Korea[J]. Metal Mine, 2021(3):148-152. doi: 10.19614/j.cnki.jsks.202103021 FU K B, XU X, HOU P Y, et al. Study on process mineralogy and floatability of a cryptocrystalline graphite in North Korea[J]. Metal Mine, 2021(3): 148-152. doi: 10.19614/j.cnki.jsks.202103021 |
[12] | 刘月东, 刘凤泽, 王新富, 等. 滇西北羊拉铜矿床 3175 m中段铜矿石和构造岩地球化学特征及地质意义[J]. 有色金属(矿山部分), 2022, 74(1):56-67. LIU Y D, LIU F Z, WANG X F, et al. Geochemical characteristics of copper ore and tectonite in the underground tunnel 3175 m section from Yangla copper deposit in northwest Yunnan and their geological implications[J]. Nonferrous Metals(Mining Section), 2022, 74(1):56-67. LIU Y D, LIU F Z, WANG X F, et al. Geochemical characteristics of copper ore and tectonite in the underground tunnel 3175 m section from Yangla copper deposit in northwest Yunnan and their geological implications[J]. Nonferrous Metals(Mining Section) , 2022, 74(1): 56-67. |
BSE and surface scanning results of scheelite particles
Correlation analysis of chemical composition of scheelite minerals
Particle size distribution
Distribution characteristics of molybdenite
Distribution characteristics of scheelite
Dissociation degree of target minerals