Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 No. 5
Article Contents

Gao Zhijuan, Wang Xiangren. Research Progress on Extraction Technology of Rare Earth Elementsfrom Coal Ash[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 15-19. doi: 10.3969/j.issn.1000-6532.2023.05.003
Citation: Gao Zhijuan, Wang Xiangren. Research Progress on Extraction Technology of Rare Earth Elementsfrom Coal Ash[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 15-19. doi: 10.3969/j.issn.1000-6532.2023.05.003

Research Progress on Extraction Technology of Rare Earth Elementsfrom Coal Ash

  • This is an essay in the field of mining engineering. High-value utilization of rare earths in fly ash can effectively alleviate the environmental pollution caused by fly ash in my country, expand the supply chain of rare earth raw materials, and ensure the strategic safety of rare earths. This article summarizes the research on rare earth element extraction technology reported from fly ash in recent years, and introduces the research progress of acid method, acid-base combined extraction technology and precipitation method and extraction method. The advantages and disadvantages of the three rare earth element extraction and separation processes are compared. It is pointed out that the research on the extraction technology of rare earth from fly ash can be based on the process flowsheet of the existing industrial equipment for extracting aluminum oxide and gallium from fly ash. The exploration of the collaborative extraction and development of aluminum, gallium and rare earth from fly ash can not only speed up the development of the extraction of rare earth from fly ash. The industrialization of the extraction and application of rare earths in coal ash also can further realize the comprehensive utilization of fly ash and increase the added value of fly ash.

  • 加载中
  • [1] Wojciech Franus and Małgorzata M. Wiatros-Motyka and Magdalena Wdowin. Coal fly ash as a resource for rare earth elements[J]. Environmental Science and Pollution Research, 2015, 22(12):9464-9474. doi: 10.1007/s11356-015-4111-9

    CrossRef Google Scholar

    [2] 中国稀土行业协会. 新兴产业推动稀土消费量显著增长[J]. 金属功能材料, 2020, 27(5):70. China Rare Earth Industry Association. Emerging industries promote a significant increase in rare earth consumption[J]. Metallic Functional Materials, 2020, 27(5):70.

    Google Scholar

    China Rare Earth Industry Association. Emerging industries promote a significant increase in rare earth consumption[J]. Metallic Functional Materials, 2020, 27(5): 70.

    Google Scholar

    [3] 邱麟惠. 中国稀土产业安全评估与对策研究[D]. 赣州: 江西理工大学, 2020.

    Google Scholar

    QIU L H. Research on Safety Assessment and Countermeasures of China's Rare Earth Industry[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.

    Google Scholar

    [4] 李超, 刘述平, 惠博, 等. 重庆地区煤系高硫稀有金属复合矿稀土的铵盐浸出试验研究[J]. 矿产综合利用, 2017(5):55-58. LI C, LIU S P, HUI B, et al. Experimental study on ammonium salt leaching of rare earths from coal-based high-sulfur rare metal composite ore in Chongqing area[J]. Multipurpose Utilization of Mineral Resources, 2017(5):55-58. doi: 10.3969/j.issn.1000-6532.2017.05.012

    CrossRef Google Scholar

    LI C, LIU S P, HUI B, et al. Experimental study on ammonium salt leaching of rare earths from coal-based high-sulfur rare metal composite ore in Chongqing area[J]. Multipurpose Utilization of Mineral Resources, 2017(5): 55-58. doi: 10.3969/j.issn.1000-6532.2017.05.012

    CrossRef Google Scholar

    [5] 于秀兰, 郎晓川, 王之昌. 从包钢选矿厂尾矿中回收稀土的工艺研究[J]. 矿产综合利用, 2009(4):38-41. YU X L, LANG X C, WANG Z C. Study on the process of recovering rare earths from the tailings of Baotou Steel's concentrator[J]. Multipurpose Utilization of Mineral Resources, 2009(4):38-41.

    Google Scholar

    YU X L, LANG X C, WANG Z C. Study on the process of recovering rare earths from the tailings of Baotou Steel's concentrator[J]. Multipurpose Utilization of Mineral Resources, 2009(4): 38-41.

    Google Scholar

    [6] 刘大锐, 高桂梅, 池君洲, 等. 准格尔煤田黑岱沟露天矿煤中稀土及微量元素的分配规律[J]. 地质学报, 2018, 92(11):2368-2375. LIU D R, GAO G M, CHI J Z, et al. Distribution law of rare earth and trace elements in coal of Heidaigou open-pit mine in Zhungeer coal field[J]. Acta Geology, 2018, 92(11):2368-2375. doi: 10.3969/j.issn.0001-5717.2018.11.012

    CrossRef Google Scholar

    LIU D R, GAO G M, CHI J Z, et al. Distribution law of rare earth and trace elements in coal of Heidaigou open-pit mine in Zhungeer coal field[J]. Acta Geology, 2018, 92(11): 2368-2375. doi: 10.3969/j.issn.0001-5717.2018.11.012

    CrossRef Google Scholar

    [7] Seredin VV, Dai S. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. Int J Coal Geol, 2012, 94:67-93. doi: 10.1016/j.coal.2011.11.001

    CrossRef Google Scholar

    [8] Jinhe Pan, Tiancheng Nie, Behzad Vaziri Hassas, et al. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching[J]. Chemosphere, 2020, 248.

    Google Scholar

    [9] 《2019年中国粉煤灰行业分析报告-市场供需现状与发展动向研究》[EB/OL]. https://wenku.baidu.com/view/d703d42e32687e21af45b307e87101f69e31fbe4.html.

    Google Scholar

    "Analysis Report of China's Fly Ash Industry in 2019-Research on Market Supply and Demand Status and Development Trends" [EB/OL]. https://wenku.baidu.com/view/d703d42e32687e21af45b307e87101f69e31fbe4.html.

    Google Scholar

    [10] 吴国强, 汪涛, 王家伟, 等. 煤和煤矸石及其燃烧产物中稀土元素赋存形态研究[J]. 燃料化学学报, 2020, 48(12):1498-1505. WU G Q, WANG T, WANG J W, et al. Study on the occurrence of rare earth elements in coal, coal gangue and their combustion products[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12):1498-1505. doi: 10.1016/S1872-5813(20)30094-3

    CrossRef Google Scholar

    WU G Q, WANG T, WANG J W, et al. Study on the occurrence of rare earth elements in coal, coal gangue and their combustion products[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1498-1505. doi: 10.1016/S1872-5813(20)30094-3

    CrossRef Google Scholar

    [11] Pan Jinhe, et al. Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes[J]. Journal of Cleaner Production, 2020, 124725.

    Google Scholar

    [12] Jinhe Pan, et al. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching[J]. Chemosphere, 2020, 248

    Google Scholar

    [13] 张旭. 准格尔电厂粉煤灰中铝、锂、镓、稀土元素浸出工艺研究[D]. 邯郸: 河北工程大学, 2018.

    Google Scholar

    ZHANG X. Research on the leaching process of aluminum, lithium, gallium and rare earth elements in the fly ash of Zhungeer Power Plant[D]. Handan: Hebei University of Technology, 2018.

    Google Scholar

    [14] 曲学峰. 国华准格尔电厂粉煤灰中稀土提取工艺研究[D]. 邯郸: 河北工程大学, 2018.

    Google Scholar

    QU X F. Study on the extraction process of rare earths in fly ash from Guohua Zhungeer Power Plant[D]. Handan: Hebei University of Engineering, 2018.

    Google Scholar

    [15] Ross K Taggart, James C Hower, Gray S Dwyer, et al. Trends in the rare earth element content of U. S.-based coal combustion fly ashes[J]. Environment Science Technology, 2016, 50:5919-5926. doi: 10.1021/acs.est.6b00085

    CrossRef Google Scholar

    [16] Banerjee Riya, et al. A single-step process to leach out rare earth elements from coal ash using organic carboxylic acids[J]. Hydrometallurgy, 2021, 201

    Google Scholar

    [17] 汤梦成. 碱熔-酸浸提取粉煤灰中稀土元素研究[D]. 北京: 中国矿业大学, 2019

    Google Scholar

    TANG M C. Study on the extraction of rare earth elements from fly ash by alkali fusion-acid leaching[D]. Beijing: China University of Mining and Technology, 2019

    Google Scholar

    [18] Mengcheng Tang et al. Study on extraction of rare earth elements from coal fly ash through alkali fusion – Acid leaching[J]. Minerals Engineering, 2019, 136:36-42. doi: 10.1016/j.mineng.2019.01.027

    CrossRef Google Scholar

    [19] 邵培. 高铝煤与煤灰中Li-Ga-REE等多元素共生组合特征及协同分离[D]. 北京: 中国矿业大学, 2019.

    Google Scholar

    SHAO P. The characteristics of multi-element symbiotic combination and synergistic separation of Li-Ga-REE in high-alumina coal and coal ash[D]. Beijing: China University of Mining and Technology, 2019.

    Google Scholar

    [20] 刘汇东. 重庆主要电厂燃煤产物的物质组成及粉煤灰的资源化利用[D]. 北京: 中国矿业大学(北京), 2015.

    Google Scholar

    LIU H D. The material composition of coal-fired products of Chongqing's main power plants and the resource utilization of fly ash[D]. Beijing: China University of Mining and Technology (Beijing), 2015.

    Google Scholar

    [21] 曹闪闪. 粉煤灰中稀土元素低温强化浸出研究[D]. 北京: 中国矿业大学, 2019.

    Google Scholar

    CAO S S. Research on low-temperature enhanced leaching of rare earth elements in fly ash[D]. Beijing: China University of Mining and Technology, 2019.

    Google Scholar

    [22] Zhen Wang, et al. Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction[J]. International Journal of Coal Geology, 2019, 203:1-14. doi: 10.1016/j.coal.2019.01.001

    CrossRef Google Scholar

    [23] Rosita Widya, Bendiyasa I Made, Perdana Indra, et al. Experimental Study of Rare Earth Element Enrichment from Indonesian Coal Fly Ash: Alkaline Leaching[J]. Key Engineering Materials, 2020, 5977:514-519.

    Google Scholar

    [24] 吉万顺. 盘北粉煤灰浸出液中多金属离子下稀土元素的选择性萃取[D]. 北京: 中国矿业大学, 2020.

    Google Scholar

    JI W S. Selective extraction of rare earth elements under polymetallic ions in Panbei fly ash leaching solution[D]. Beijing: China University of Mining and Technology, 2020.

    Google Scholar

    [25] 王涛, 张新军. 煤中伴生矿产赋存状态及提取方法综述[J]. 矿产综合利用, 2019(4):21-25. WANG T, ZHANG X J. Summary of the occurrence status and extraction methods of associated minerals in coal[J]. Multipurpose Utilization of Mineral Resources, 2019(4):21-25. doi: 10.3969/j.issn.1000-6532.2019.04.004

    CrossRef Google Scholar

    WANG T, ZHANG X J. Summary of the occurrence status and extraction methods of associated minerals in coal[J]. Multipurpose Utilization of Mineral Resources, 2019 (4): 21-25. doi: 10.3969/j.issn.1000-6532.2019.04.004

    CrossRef Google Scholar

    [26] 王宏宾, 杜艳霞, 王永旺. 粉煤灰“一步酸溶法”提取氧化铝过程中钪的分布[J]. 稀土, 2020, 41(6):64-69. WANG H B, DU Y X, WANG Y W. The distribution of scandium in the process of extracting alumina from fly ash by "one-step acid solution"[J]. Rare Earths, 2020, 41(6):64-69.

    Google Scholar

    WANG H B, DU Y X, WANG Y W. The distribution of scandium in the process of extracting alumina from fly ash by "one-step acid solution"[J]. Rare Earths, 2020, 41(6): 64-69

    Google Scholar

    [27] 高志娟, 王相人. 煤粉炉粉煤灰提取氧化铝活化技术研究进展[J]. 无机盐工业, 2021, 53(2):24-27. GAO Z J, WANG X R. Research progress of activation technology of extracting alumina from pulverized coal ash[J]. Inorganic Salt Industry, 2021, 53(2):24-27.

    Google Scholar

    GAO Z J, WANG X R. Research progress of activation technology of extracting alumina from pulverized coal ash[J]. Inorganic Salt Industry, 2021, 53(2): 24-27.

    Google Scholar

    [28] 肖永丰. 粉煤灰提取氧化铝方法研究[J]. 矿产综合利用, 2020(4):156-162. XIAO Y F. Study on the method of extracting alumina from fly ash[J]. Multipurpose Utilization of Mineral Resources, 2020(4):156-162. doi: 10.3969/j.issn.1000-6532.2020.04.027

    CrossRef Google Scholar

    XIAO Y F. Study on the method of extracting alumina from fly ash[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 156-162. doi: 10.3969/j.issn.1000-6532.2020.04.027

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(1770) PDF downloads(350) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint