Citation: | Chen Xin, Chao Yande, Huang Yehao, Li Shulei. Application of Cyclonic-Static Microbubble Flotation Column in a Fine-grained Molybdenum Ore in Henan Province[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 7-14. doi: 10.3969/j.issn.1000-6532.2023.05.002 |
This is an essay in the field of mineral processing engineering. A molybdenum mine in Henan Province belongs to the skarn type molybdenum mine, which has the characteristics of extremely fine embedded particle size and high mud mineral content, and the molybdenum has suffered poor recovery. This paper systematically analyzed the ore properties and production status and analyzed the main problems existing in the production. In order to meet the needs of the 4000 t/d capacity expansion and reconstruction of the ore dressing plant, and to synergistically strengthen the recovery of fine-grained molybdenite particles, a cyclonic-static microbubble flotation column was proposed to add combined with the structural characteristics and separation advantages. The research results show that the molybdenum ore was embedded with micro-fine size, and -0.038 mm and -0.020 mm molybdenite accounted for 75.80% and 38.68%, respectively. Moreover, the ores contained a large amount of epidote, montmorillonite, chlorite and other argillaceous minerals, and the content of argillaceous minerals in some pit mouths was more than 40%. The existing flotation process has suffered poor recovery in the fine-grained particles, and the loss of molybdenum with -0.020 mm size in the tailings accounted for more than 50%. Laboratory flotation test results show that the cyclone-static microbubble flotation column had a good flotation effect on molybdenum recovery in total tailings and rougher tailings, and the concentrate enrichment ratio and molybdenum recovery rate were obviously better than flotation machine. The engineering practice further shows that the cyclone-static microbubble flotation column played a role in regaining better recovery for the existing flotation column, and the molybdenum recovery rate after the expansion was increased by more than 4 percentage points, and the loss of fine-grained molybdenite particles in tailings were significantly reduced, which achieved significant economic benefits.
[1] | 李辉, 胡平, 邢海瑞, 等. 钼合金高温力学性能研究现状综述[J]. 功能材料, 2020, 51(10):10044-10054. LI H, HU P, XING H R, et al. A survey of high temperature mechanical properties of molybdenum alloys[J]. Journal of Functional Materials, 2020, 51(10):10044-10054. LI H, HU P, XING H R, et al. A survey of high temperature mechanical properties of molybdenum alloys[J]. Journal of Functional Materials, 2020, 51(10): 10044-10054. |
[2] | 公彦兵, 沈裕军, 丁喻, 等. 辉钼矿湿法冶金研究进展[J]. 矿冶工程, 2009, 29(1):78-81. GONG Y B, SHEN Y J, DING Y, et al. Development of hydrometallurgical processes of molybdenite[J]. Mining and Metallurgical Engineering, 2009, 29(1):78-81. GONG Y B, SHEN Y J, DING Y, et al. Development of hydrometallurgical processes of molybdenite[J]. Mining and Metallurgical Engineering, 2009, 29(1): 78-81. |
[3] | 林清泉, 吴启明, 戴智飞, 等. 微细粒辉钼矿浮选机理研究[J]. 矿冶工程, 2021, 41(3):37-41,45. LIN Q Q, WU Q M, DAI Z F, et al. Mechanism for hydrocarbon oil collectors in flotation of fine molybdenite ore[J]. Mining and Metallurgical Engineering, 2021, 41(3):37-41,45. LIN Q Q, WU Q M, DAI Z F, et al. Mechanism for hydrocarbon oil collectors in flotation of fine molybdenite ore[J]. Mining and Metallurgical Engineering, 2021, 41(3): 37-41, 45. |
[4] | 李树磊, 曹亦俊, 廖寅飞, 等. 基于Washburn法的辉钼矿尺度效应分析及浮选响应[J]. 中国矿业大学学报, 2022, 51(1):187-195,206. LI S L, CAO Y J, LIAO Y F, et al. Scale effect analysis and flotation response of molybdenite based on Washburn method[J]. Journal of China University of Mining & Technology, 2022, 51(1):187-195,206. LI S L, CAO Y J, LIAO Y F, et al. Scale effect analysis and flotation response of molybdenite based on Washburn method[J]. Journal of China University of Mining & Technology, 2022, 51(1): 187-195, 206. |
[5] | 梁艳男, 王海楠, 周若谦, 等. 浮选微泡调控及其作用机制的研究进展[J]. 矿产综合利用, 2022(2):158-166. LIANG Y N, WANG H N, ZHOU R Q, et al. Investigation advances on regulation and mechanism of microbubbles in flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2):158-166. LIANG Y N, WANG H N, ZHOU R Q, et al. Investigation advances on regulation and mechanism of microbubbles in flotation[J]. Multipurpose Utilization of Mineral Resources, 2022(2): 158-166. |
[6] | 曾克文, 余永富, 薛玉兰. 浮选机槽内矿浆紊流强度对氧化矿浮选的影响[J]. 矿产综合利用, 2001(2):19-22. ZENG K W, YU Y F, XUE Y L. Effect of turbulence of pulp in flotation cell on flotation of oxidized ore[J]. Multipurpose Utilization of Mineral Resources, 2001(2):19-22. ZENG K W, YU Y F, XUE Y L. Effect of turbulence of pulp in flotation cell on flotation of oxidized ore[J]. Multipurpose Utilization of Mineral Resources, 2001 (2): 19-22. |
[7] | 苑宏倩, 韩跃新, 李艳军, 等. 齐大山选矿分厂磁选精矿剪切絮凝正浮选研究[J]. 金属矿山, 2011(4):50-53. YUAN H Q, HAN Y X, LI Y J, et al. Study on shear flocculation and flotation of magnetic separation concentrate in Qidashan iron ore[J]. Metal Mine, 2011(4):50-53. YUAN H Q, HAN Y X, LI Y J, et al. Study on shear flocculation and flotation of magnetic separation concentrate in Qidashan iron ore[J]. Metal Mine, 2011 (4): 50-53. |
[8] | 岳双凌, 廖寅飞, 马子龙. 选择性絮凝-柱浮选回收钼精选尾矿中的微细粒辉钼矿[J]. 矿产综合利用, 2018(5):52-57. YUE S L, LIAO Y F, MA Z L. Recovering fine molybdenite from molybdenum cleaning tailings by selective flocculation-column flotation[J]. Multipurpose Utilization of Mineral Resources, 2018(5):52-57. YUE S L, LIAO Y F, MA Z L. Recovering fine molybdenite from molybdenum cleaning tailings by selective flocculation-column flotation[J]. Multipurpose Utilization of Mineral Resources, 2018(5): 52-57. |
[9] | SAHINOGLU E, USLU T. Effect of particle size on cleaning of high-sulphur fine coal by oil agglomeration[J]. Fuel Processing Technology, 2014, 128:211-219. doi: 10.1016/j.fuproc.2014.07.015 |
[10] | 刘清侠, 李明达, 郭蔚, 等. 微细粒疏水矿物表面微泡强化浮选的作用机理[J]. 中国矿业大学学报, 2022, 51(3):466-473. LIU Q X, LI M D, GUO W, et al. Fundamental understanding of microbubbles on fine hydrophobic mineral surface in flotation[J]. Journal of China University of Mining & Technology, 2022, 51(3):466-473. LIU Q X, LI M D, GUO W, et al. Fundamental understanding of microbubbles on fine hydrophobic mineral surface in flotation[J]. Journal of China University of Mining & Technology, 2022, 51(3): 466-473. |
[11] | 曹亦俊, 闫小康, 王利军, 等. 微细粒浮选的微观湍流强化[J]. 矿产保护与利用, 2017(2):113-118. CAO Y J, YAN X K, WANG L J, et al. The Micro-turbulence intensification on the fineminerals floatation[J]. Conservation and Utilization of Mineral Resources, 2017(2):113-118. CAO Y J, YAN X K, WANG L J, et al. The Micro-turbulence intensification on the fineminerals floatation[J]. Conservation and Utilization of Mineral Resources, 2017(2): 113-118. |
[12] | 刘炯天, 李小兵, 王永田, 等. 旋流-静态微泡浮选柱浮选某难选钼矿的实验研究[J]. 中南大学学报(自然科学版), 2008(2):300-306. LIU J T, LI X B, WANG Y T, et al. Experimental study on separating some molybdenum ore by using cyclonic-static micro-bubble flotation column[J]. Journal of Central South University(Science and Technology), 2008(2):300-306. LIU J T, LI X B, WANG Y T, et al. Experimental study on separating some molybdenum ore by using cyclonic-static micro-bubble flotation column[J]. Journal of Central South University(Science and Technology), 2008(2): 300-306. |
[13] | 牛敏, 李景超, 刘磊, 等. 旋流-静态微泡浮选柱在晶质石墨浮选中的应用[J]. 中国矿业, 2020, 29(S1):361-366. NIU M, LI J C, LIU L, et al. Application cyclone static microbubble flotation column in the flotation of crystalline graphite[J]. China Mining Magazine, 2020, 29(S1):361-366. NIU M, LI J C, LIU L, et al. Application cyclone static microbubble flotation column in the flotation of crystalline graphite[J]. China Mining Magazine, 2020, 29(S1): 361-366. |
[14] | 高秀, 马子龙, 刘长青. 矿物在旋流-静态微泡浮选柱旋流段的分布规律[J]. 矿产综合利用, 2016(1):92-96. GAO X, MA Z L, LIU C Q. Study on distribution of mineral in cyclone zone of cyclonic static micro-bubble flotation column[J]. Multipurpose Utilization of Mineral Resources, 2016(1):92-96. GAO X, MA Z L, LIU C Q. Study on distribution of mineral in cyclone zone of cyclonic static micro-bubble flotation column[J]. Multipurpose Utilization of Mineral Resources, 2016(1): 92-96. |
[15] | 秦华江, 张海军, 何川, 等. 旋流-静态微泡浮选柱回收钼精选尾矿中钼金属[J]. 中国钼业, 2016, 40(4):6-9. QIN H J, ZHANG H J, HE C, et al. Study on the recovery of molybdenum in molybdenum cleaner tailings using cyclonic-static microbubble flotation column[J]. China Molybdenum Industry, 2016, 40(4):6-9. QIN H J, ZHANG H J, HE C, et al. Study on the recovery of molybdenum in molybdenum cleaner tailings using cyclonic-static microbubble flotation column[J]. China Molybdenum Industry, 2016, 40(4): 6-9. |
[16] | 孙志健, 吴熙群, 李成必, 等. 高含泥矿石浮选综述[J]. 有色金属(选矿部分), 2020(1):59-63. SUN Z J, WU X Q, LI C B, et al. A summary of high contents slime ore flotation[J]. Nonferrous Metals(Mineral Processing Section), 2020(1):59-63. SUN Z J, WU X Q, LI C B, et al. A summary of high contents slime ore flotation [J]. Nonferrous Metals(Mineral Processing Section), 2020(1): 59-63. |
[17] | 卫召, 孙伟, 张庆鹏, 等. 细粒硫化铜矿与易泥化钙镁矿物的浮选分离[J]. 有色金属工程, 2017, 7(4):64-69. WEI Z, SUN W, ZHANG Q P, et al. Flotation separation of fine copper sulfide and easy-sliming calcium-magnesium minerals[J]. Nonferrous Metals Engineering, 2017, 7(4):64-69. WEI Z, SUN W, ZHANG Q P, et al. Flotation separation of fine copper sulfide and easy-sliming calcium-magnesium minerals [J]. Nonferrous Metals Engineering, 2017, 7(4): 64-69. |
[18] | YOON R H, LUTTRELL G H. The effect of bubble size on fine particle flotation[J]. Mineral Procesing and Extractive Metallurgy Review, 1989, 5(1-4):101-122. doi: 10.1080/08827508908952646 |
[19] | 桂夏辉, 刘炯天, 曹亦俊, 等. 气泡发生器结构性能的研究与进展[J]. 选煤技术, 2009(2):66-70. GUI X H, LIU J T, CAO Y J, et al. Current study and development of structure and performance of bubble generator[J]. Coal Preparation Technology, 2009(2):66-70. GUI X H, LIU J T, CAO Y J, et al. Current study and development of structure and performance of bubble generator[J]. Coal Preparation Technology, 2009(2): 66-70. |
Process flow of roughing and scavenging before transformation
Microscopic micrograph of tailings
Process flow chart of roughing and cleaning after transformation
Recovery rate change of Mo for the two flotation columns
Particle size analysis results of the flotation columns froth
Fine Mo loss change before and after modification