Citation: | Deng Wei, Xu Yanbo. Mineral Processing of Low Grade Beryllium Ores in the Jiulong Area of Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 103-113. doi: 10.3969/j.issn.1000-6532.2023.04.016 |
This is an essay in the field of mineral processing engineering . Beryllium is known as "super metal" and "cutting-edge metal", and is listed as a key and strategic mineral resource in China. Beryl is an important source of beryllium, but due to the low grade of the raw ore and the limitations of beneficiation technology, the problem of the availability of low-grade beryl has not been solved yet. Therefore, this article conducts beneficiation experiments on extremely low-grade beryllium ore in western Sichuan. Self-developed new and efficient inorganic combination activator MD-2 and chelating collector ST-12 are developed and employed. For the raw ore with a BeO grade of 0.089% in the Jiulong area, under the condition of grinding fineness of -0.074 mm content of 89.1%, a beryllium concentrate with a BeO grade of 4.09% and a BeO recovery rate of 89.60% was obtained through a flotation closed circuit experiment of "one roughing, one scavenging, and six cleanings". After a stage of high intensity separation with a magnetic field strength of 0.8 T, the BeO grade of the closed circuit flotation of beryllium concentrate can be increased from 4% to over 5%, meeting the requirements for qualified beryllium concentrate grade. The BeO operation recovery rate reaches 87.08%, and the technical indicators are good. The overall beneficiation technology of "flotation enrichment-magnetic separation upgrading" developed in this experiment obtained concentrate with a BeO grade of 5.47% and a BeO recovery rate of 78.09%. The research findings of this study can provide important technical support for the development and utilization of this mine and similar mineral resources.
[1] | 梁飞, 赵汀, 王登红, 等. 中国铍资源供需预测与发展战略[J]. 中国矿业, 2018, 27(11):6-10+7. LIANG F, ZHAO T, WANG D H, et al. Supply and demand forecast and development strategy of beryllium resources in China[J]. China Mining Magazine, 2018, 27(11):6-10+7. LIANG F, ZHAO T, WANG D H, et al. Supply and demand forecast and development strategy of beryllium resources in China[J]. China Mining Magazine, 2018, 27(11): 6-10+7. |
[2] | 李建康, 邹天人, 王登红, 等. 中国铍矿成矿规律[J]. 矿床地质, 2017, 36(4):951-78. LI J K, ZOU T R, WANG D H, et al. A review of beryllium metallogenic regularity in China[J]. Mineral Deposits, 2017, 36(4):951-78. LI J K, ZOU T R, WANG D H, et al. A review of beryllium metallogenic regularity in China[J]. Mineral Deposits, 2017, 36(4): 951-78. |
[3] | 刘劲松, 高丽丽. 美国铍矿产业供需格局及产业政策分析[J]. 中国矿业, 2022, 31(3):31-6. LIU J S, GAO L L. Analysis on the supply and demand pattern and industrial policy of beryllium mineindustry in the United States[J]. China Mining Magazine, 2022, 31(3):31-6. LIU J S, GAO L L. Analysis on the supply and demand pattern and industrial policy of beryllium mineindustry in the United States[J]. China Mining Magazine, 2022, 31(3): 31-6. |
[4] | 许秀婷, 教镇渤, 海国泉, 等. 铍矿产业发展现状[J]. 新疆有色金属, 2021, 44(1):4-8. XU X T, JIAO Z B, HAI G Q, et al. Development status of beryllium ore industry[J]. Xinjiang Nonferrous Metals, 2021, 44(1):4-8. XU X T, JIAO Z B, HAI G Q, et al. Development status of beryllium ore industry[J]. Xinjiang Nonferrous Metals, 2021, 44(1): 4-8. |
[5] | 吴西顺, 王登红, 黄文斌, 等. 全球锂矿及伴生铍铌钽的采选冶技术发展趋势[J]. 矿产综合利用, 2020(1):1-9. WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2020(1):1-9. WU X S, WANG DH , HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation [J]. Multipurpose Utilization of Mineral Resources, 2020 (1): 1-9. |
[6] | 高亢亢, 马靖, 韦娉婷, 等. 超级金属铍: 未来路在何方[J]. 矿物岩石地球化学通报, 2023, 42(1):248-52. GAO K K, MA J, WEI P T, et al. Super metal beryllium: where the future lies[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(1):248-52. GAO K K, MA J, WEI P T, et al. Super metal beryllium: where the future lies [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(1): 248-52. |
[7] | 李宏, 谭秀民, 张秀峰, 等. 铍资源现状及其选冶技术进展[J]. 有色金属科学与工程, 2022, 13(4):44-53. LI H, TAN X M, ZHANG X F, et al. The current situation of beryllium resources and the progress of beneficiation and metallurgy technology[J]. Nonferrous Metals Science and Engineering, 2022, 13(4):44-53. LI H, TAN X M, ZHANG X F, et al. The current situation of beryllium resources and the progress of beneficiation and metallurgy technology[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 44-53. |
[8] | 汪泰, 胡真, 王威. 锂铍稀有金属选矿及综合利用研究现状和展望[J]. 有色金属(选矿部分), 2020(6):24-9. WANG T, HU Z, WANG W. Research status and prospects of lithium beryllium rare metals beneficiation and comprehensive utilization[J]. Nonferrous Metals(Mineral Processing Section), 2020(6):24-9. WANG T, HU Z, WANG W. Research status and prospects of lithium beryllium rare metals beneficiation and comprehensive utilization[J]. Nonferrous Metals(Mineral Processing Section), 2020(6): 24-9. |
[9] | 毛素荣, 李光明, 钟乐乐, 等. 铍的选矿研究现状和展望[J]. 有色金属(选矿部分), 2022(6):17-24+154. MAO S R, LI G M, ZHONG L L, et al. Present situation and prospect of mineral processing of beryllium[J]. Nonferrous Metals(Mineral Processing Section), 2022(6):17-24+154. MAO S R, LI G M, ZHONG L L, et al. Present situation and prospect of mineral processing of beryllium[J]. Nonferrous Metals(Mineral Processing Section), 2022(6): 17-24+154. |
[10] | 邓伟, 颜世强, 谭洪旗, 等. 我国铍矿资源概况及选矿技术研究现状[J]. 矿产综合利用, 2023(1):148-54. DENG W, YAN S Q, TAN H Q, et al. General situation of beryllium ore resources and research status of mineral processing technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023(1):148-54. DENG W, YAN S Q, TAN H Q, et al. General situation of beryllium ore resources and research status of mineral processing technology in China[J]. Multipurpose Utilization of Mineral Resources, 2023(1): 148-54. |
[11] | 《矿产资源工业要求手册》编委会. 矿产资源工业要求手册 [M]. 北京: 地质出版社, 2010. Editorial Committee of the Mineral Resources Industry Requirements. Manual handbook of industrial requirements for mineral resources[M]. Beijing: Geological Publishing House, 2010. |
[12] | 赖杨, 邓伟. 川西九龙打枪沟锂铍矿石特征及其铷元素赋存状态和分布规律研究[J]. 矿产综合利用, 2022(5):185-92. LAI Y, DENG W. Characteristics of lithium beryllium ore and occurrence anddistribution of rubidium element in ore, in Daqianggou, Jiulong, West Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2022(5):185-92. LAI Y, DENG W. Characteristics of lithium beryllium ore and occurrence anddistribution of rubidium element in ore, in Daqianggou, Jiulong, West Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2022(5): 185-92. |
[13] | 李凤久, 孔亚然, 贾清梅. 某萤石矿选矿实验研究[J]. 矿产综合利用, 2023(2):81-6+123. LI F J, KONG Y R, JIA M Q. Experimental study on mineral processing of a fluorite mine[J]. Multipurpose Utilization of Mineral Resources, 2023(2):81-6+123. LI F J, KONG Y R, JIA M Q. Experimental study on mineral processing of a fluorite mine[J]. Multipurpose Utilization of Mineral Resources, 2023(2): 81-6+123. |
Process of flotation exploration test
Process of roughing condition test
Effect of grinding fineness on grade and recovery
Effect of Na2CO3 dosage on grade and recovery
Effect of pH value on grade and recovery
Effect of MD-2 dosage on grade and recovery
Effect of MD-2 dosage on grade and recovery
Process of flotation time test
Process of cleaning condition test
Process of flotation open circuit test
Process of flotation closed circuit test
Process of magnetic separation test
Entire process of mineral processing test