Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 No. 4
Article Contents

Zhang Xiaotian, Xu Lu, Huang Bin, Li Weisi, Ji Chengqing, Yang Yaohui. Research and Industrialization Status of Recycling of Waste Lithium Iron Phosphate Batteries[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 95-102, 113. doi: 10.3969/j.issn.1000-6532.2023.04.015
Citation: Zhang Xiaotian, Xu Lu, Huang Bin, Li Weisi, Ji Chengqing, Yang Yaohui. Research and Industrialization Status of Recycling of Waste Lithium Iron Phosphate Batteries[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 95-102, 113. doi: 10.3969/j.issn.1000-6532.2023.04.015

Research and Industrialization Status of Recycling of Waste Lithium Iron Phosphate Batteries

More Information
  • This is an essay in the field of material engineering. In recent years, the new energy has been growing fast than ever. Apparently, in the upcoming future, a large number of lithium iron phosphate batteries will be retired. Out of the need to protect China's strategic mineral resources and reduce environmental pollution, research and development of a green, efficient and sustainable recycling process of spent lithium iron phosphate batteries is urgent. This essay takes the main components and general recycling process of waste lithium iron phosphate battery as the research object and introduces the principle, advantages and disadvantages, and research status of various recovery processes such as pretreatment, cathode material, negative electrode material and electrolyte. On this basis, future perspectives of lithium iron phosphate battery recycling are presented, aiming to provide support for the industrialization and development of the spent lithium iron phosphate battery recycling technology in China.

  • 加载中
  • [1] 中华人民共和国国家发展和改革委员会. 新能源汽车生产准入管理规则[EB/OL]. 2007, 10: http://www.gov.cn/zwgk/2007-10/24/content_785019.htm.

    Google Scholar

    National Development and Reform Commission. Management rules for production access of new energy vehicles[EB/OL]. 2007, 10: http://www.gov.cn/zwgk/2007-10/24/content_785019.htm.

    Google Scholar

    [2] 李波, 张莉莉, 洪秋阳, 等. 废弃锂电池电极材料中有价金属的赋存状态[J]. 矿产综合利用, 2022(1):200-204. LI B, ZHANG L L, HONG Q Y, et al. Study on the occurrence state of valuable metals in waste lithium battery electrode material[J]. Multipurpose Utilization of Mineral Resources, 2022(1):200-204. doi: 10.3969/j.issn.1000-6532.2022.01.029

    CrossRef Google Scholar

    LI B, ZHANG L L, HONG Q Y, et al. Study on the occurrence state of valuable metals in waste lithium battery electrode material[J]. Multipurpose Utilization of Mineral Resources, 2022 (1): 200-204. doi: 10.3969/j.issn.1000-6532.2022.01.029

    CrossRef Google Scholar

    [3] 邢凯, 朱清, 邹谢华, 等. 新能源背景下锂资源产业链发展研究[J/OL]. 中国地质: 1-19[2023-05-12]. http://kns.cnki.net/kcms/detail/11.1167.P.20221206.1440.004.html.

    Google Scholar

    XING K, ZHU Q, ZOU X H, et al. Research on development of industry chain of lithium resources under the background of new energy[J/OL]. Geology in China: 1-19[2023-05-12]. http://kns.cnki.net/kcms/detail/11.1167.P.20221206.1440.004.html.

    Google Scholar

    [4] 王秋舒. 全球锂矿资源勘查开发及供需形势分析[J]. 中国矿业, 2016, 25(3):11-15+24. WANG Q S. Analysis of global lithium resources expioration and development, supply and demand situation[J]. China Mining Magazine, 2016, 25(3):11-15+24. doi: 10.3969/j.issn.1004-4051.2016.03.003

    CrossRef Google Scholar

    WANG Q S. Analysis of global lithium resources expioration and development, supply and demand situation[J]. China Mining Magazine, 2016, 25(3): 11-15+24. doi: 10.3969/j.issn.1004-4051.2016.03.003

    CrossRef Google Scholar

    [5] 何金祥, 崔荣国, 刘伟, 等. 世界锂矿业发展与展望[J]. 国土资源情报, 2020(238):21-26. HE J X, CUI R G, LIU W, et al. Development of world lithium mining industry and prospect[J]. Natural Resources Information, 2020(238):21-26.

    Google Scholar

    HE J X, CUI R G, LIU W, et al. Development of world lithium mining industry and prospect[J]. Natural Resources Information, 2020, No. 238(10): 21-26.

    Google Scholar

    [6] 刘丽君, 王登红, 刘喜方, 等. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 2017, 44(2):263-278. LIU L J, WANG D H, LIU X F, et al. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 2017, 44(2):263-278. doi: 10.12029/gc20170204

    CrossRef Google Scholar

    LIU L J, WANG D H, LIU X F, et al. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 2017, 44(2): 263-278. doi: 10.12029/gc20170204

    CrossRef Google Scholar

    [7] 许洁, 陈潇. 动力电池将迎“退役”高峰上市公司积极布局锂电池回收[N]. 证券日报, 2023-02-23(B02). DOI:10.28096/n.cnki.ncjrb.2023.000863.

    Google Scholar

    XU J, CHEN X. Power batteries will face the peak of "retirement", and listed companies will actively layout lithium battery recycling[N]. Securities Daily, 2023-02-23(B02). DOI:10.28096/n.cnki.ncjrb.2023.000863.

    Google Scholar

    [8] 徐正震, 梁精龙, 李慧, 等. 废旧锂电池正极材料中有价金属的回收工艺研究进展[J]. 矿产综合利用, 2022(4):119-122. XU Z Z, LIANG J L, LI H, et al. Research progress of recovery process of valuable metals in cathode materials of waste lithium batteries[J]. Multipurpose Utilization of Mineral Resources, 2022(4):119-122. doi: 10.3969/j.issn.1000-6532.2022.04.021

    CrossRef Google Scholar

    XU Z Z, LIANG J L, LI H, et al. Research progress of recovery process of valuable metals in cathode materials of waste lithium batteries[J]. Multipurpose Utilization of Mineral Resources, 2022(4): 119-122. doi: 10.3969/j.issn.1000-6532.2022.04.021

    CrossRef Google Scholar

    [9] HE L P, SUN S Y, MU Y Y, et al. Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using l-tartaric acid as a leachant[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1):714-721.

    Google Scholar

    [10] NIE H, XU L, SONG D, et al. LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis[J]. Green Chemistry, 2015, 17(2):1276-1280. doi: 10.1039/C4GC01951B

    CrossRef Google Scholar

    [11] 李建波, 徐政, 纪仲光, 等. 废旧锂离子动力电池回收的研究现状[J]. 稀有金属, 2019, 43(2):201-212. LI J B, XU Z, JI Z G, et al. Overview on current technologies of recycling spent lithium-ion batteries[J]. Chinese Journal of Rare Metals, 2019, 43(2):201-212. doi: 10.13373/j.cnki.cjrm.xy17060021

    CrossRef Google Scholar

    LI J B, XU Z, JI Z G, et al. Overview on current technologies of recycling spent lithium-ion batteries[J]. Chinese Journal of Rare Metals, 2019, 43(2): 201-212. doi: 10.13373/j.cnki.cjrm.xy17060021

    CrossRef Google Scholar

    [12] 卫寿平, 孙杰, 周添, 等. 废旧锂离子电池中金属材料回收技术研究进展[J]. 储能科学与技术, 2017, 6(6):1196-1207. WEI S P, SUN J, ZHOU T, et al. Research development of metals recovery from spent lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(6):1196-1207. doi: 10.12028/j.issn.2095-4239.2017.0072

    CrossRef Google Scholar

    WEI S P, SUN J, ZHOU T, et al. Research development of metals recovery from spent lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(6): 1196-1207. doi: 10.12028/j.issn.2095-4239.2017.0072

    CrossRef Google Scholar

    [13] ZHANG Y, HE Y, ZHANG T, et al. Application of falcon centrifuge in the recycling of electrode materials from spent lithium ion batteries[J]. Journal of Cleaner Production, 2018, 202:736-747. doi: 10.1016/j.jclepro.2018.08.133

    CrossRef Google Scholar

    [14] BI H, ZHU H, ZU L, et al. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries[J]. Waste Manag Res, 2019, 37(12):1217-1228. doi: 10.1177/0734242X19871610

    CrossRef Google Scholar

    [15] SILVEIRA A V M, SANTANA M P, TANABE E H, et al. Recovery of valuable materials from spent lithium ion batteries using electrostatic separation[J]. International Journal of Mineral Processing, 2017, 169:91-98. doi: 10.1016/j.minpro.2017.11.003

    CrossRef Google Scholar

    [16] WANG F, ZHANG T, HE Y, et al. Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment[J]. Journal of Cleaner Production, 2018, 185:646-652. doi: 10.1016/j.jclepro.2018.03.069

    CrossRef Google Scholar

    [17] HE Y Q, ZHANG T, WANG F F, et al. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation[J]. Journal of Cleaner Production, 2017, 143:319-325. doi: 10.1016/j.jclepro.2016.12.106

    CrossRef Google Scholar

    [18] 张日林, 雷云, 魏广叶, 等. 采用热解浮选回收废旧锂离子电池中磷酸铁锂[J]. 中国有色金属学报: 1-23[2023-05-20]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220628.1240.001.html.

    Google Scholar

    ZHANG R L, LEI Y, WEI G Y, et al. Recovery of LiFePO4 from spent lithium-ion batteries by pyrolysis flotation[J]. The Chinese Journal of Nonferrous Metals, 1-23[2023-05-20]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220628.1240.001.html.

    Google Scholar

    [19] 刘铸. 废旧磷酸铁锂正极材料短流程回收及固相修复技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    Google Scholar

    LIU Z. Research on short process recovery and solid phase regeneration of spent LiFePO4 materials[D]. Harbin: Harbin Institute of Technology, 2021.

    Google Scholar

    [20] 王韵珂, 延卫, 万邦隆, 等. 废旧锂电池磷酸铁锂正极材料回收工艺研究进展[J]. 云南化工, 2022, 49(6):1-6. WANG Y K, YAN W, WAN B L, et al. Progress in recycling technology of lithium iron phosphate cathode materials for spent lithium - ion battery[J]. Yunnan Chemical Technology, 2022, 49(6):1-6. doi: 10.3969/j.issn.1004-275X.2022.06.01

    CrossRef Google Scholar

    WANG Y K, YAN W, WAN B L, et al. Progress in recycling technology of lithium iron phosphate cathode materials for spent lithium - ion battery[J]. Yunnan Chemical Technology, 2022, 49(6): 1-6. doi: 10.3969/j.issn.1004-275X.2022.06.01

    CrossRef Google Scholar

    [21] 李金龙, 何亚群, 付元鹏, 等. 废弃锂离子电池正极材料酸浸出试验研究[J]. 矿产综合利用, 2020(2):128-134. LI J L, HE Y Q, FU Y P, et al. Study on leaching cathode materials of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources, 2020(2):128-134. doi: 10.3969/j.issn.1000-6532.2020.02.023

    CrossRef Google Scholar

    LI J L, HE Y Q, FU Y P, et al. Study on leaching cathode materials of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 128-134. doi: 10.3969/j.issn.1000-6532.2020.02.023

    CrossRef Google Scholar

    [22] YANG C, ZHANG J L, JING Q K, et al. Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(9):1478-1487. doi: 10.1007/s12613-020-2137-6

    CrossRef Google Scholar

    [23] KUMAR J, SHEN X, LI B, et al. Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4[J]. Waste Managment, 2020, 113:32-40. doi: 10.1016/j.wasman.2020.05.046

    CrossRef Google Scholar

    [24] 李棉, 程琍琍, 杨幼明, 等. 锂离子电池回收利用技术研究进展[J]. 稀有金属, 2022, 46(3):349-366. LI M, CHENG L L, YANG Y M, et al. Development of technology for spent lithium-ion batteries recycling: a review[J]. Chinese Journal of Rare Metals, 2022, 46(3):349-366.

    Google Scholar

    LI M, CHENG L L, YANG Y M, et al. Development of technology for spent lithium-ion batteries recycling: a review[J]. Chinese Journal of Rare Metals, 2022, 46(3): 349-366.

    Google Scholar

    [25] FAN E S, LI L, ZHANG X X, et al. Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8):11029-11035.

    Google Scholar

    [26] YANG Y, ZHENG X, CAO H, et al. A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11):9972-9980.

    Google Scholar

    [27] 何奥希, 陈晋, 李毅恒, 等. 机械活化在矿物浸出过程中的应用研究[J]. 矿产综合利用, 2018(4):1-6. HE A X, CHEN J, LI Y H, et al. Application and research on mechanical activation in mineral leaching[J]. Multipurpose Utilization of Mineral Resources, 2018(4):1-6. doi: 10.3969/j.issn.1000-6532.2018.04.001

    CrossRef Google Scholar

    HE A X, CHEN J, LI Y H, et al. Application and research on mechanical activation in mineral leaching[J]. Multipurpose Utilization of Mineral Resources, 2018, (4): 1-6. doi: 10.3969/j.issn.1000-6532.2018.04.001

    CrossRef Google Scholar

    [28] 董敏, 胡启阳, 李新海, 等. 废旧磷酸铁锂电池高值回收制备磷酸铁锂材料[J]. 中国有色金属学报: 1-14 [2023-05-12]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220 720.1349.002.html.

    Google Scholar

    DONG M, HU Q Y, LI X H, et al. High value recovery of waste lithium iron phosphate batteries to prepare lithium iron phosphate materials[J]. The Chinese Journal of Nonferrous Metals: 1-14 [2023-05-12]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220720.1349.00 2.html.

    Google Scholar

    [29] 王艺博, 阮久莉, 郭玉文, 等. TBP为萃取剂分离废磷酸铁锂电池中金属锂的研究[J]. 现代化工, 2021, 41(7):185-190. WANG Y B, RUAN J L, GUO Y W, et al. Separation of lithium metal from spent lithium iron phosphate batteries with TBP as extractant[J]. Modern Chemical Industry, 2021, 41(7):185-190.

    Google Scholar

    WANG Y B, RUAN J L, GUO Y W, et al. Separation of lithium metal from spent lithium iron phosphate batteries with TBP as extractant[J]. Modern Chemical Industry, 2021, 41(7): 185-190.

    Google Scholar

    [30] WESSELBORG T, VIROLAINEN S, SAINIO T. Recovery of lithium from leach solutions of battery waste using direct solvent extraction with TBP and FeCl3[J]. Hydrometallurgy, 2021, 202:105593. doi: 10.1016/j.hydromet.2021.105593

    CrossRef Google Scholar

    [31] 张文静. 新能源汽车动力电池回收问题的探讨[J]. 资源节约与环保, 2022(246):135-137. ZHANG W J. Discussion on the recycling of power batteries for new energy vehicles[J]. Resources Economization & Environment Protection, 2022(246):135-137. doi: 10.16317/j.cnki.12-1377/x.2022.05.007

    CrossRef Google Scholar

    ZHANG W J. Discussion on the Recycling of Power Batteries for New Energy Vehicles[J]. Resources Economization & Environment Protection, 2022, No. 246(5): 135-137. DOI:10.16317/j.cnki.12-1377/x.2022.05.007.

    CrossRef Google Scholar

    [32] 姚美娇. 动力电池回收多重难题待解[N]. 中国能源报, 2023-02-20(5). DOI:10.28693/n.cnki.nshca.2023.000276.

    Google Scholar

    YAO M J. Multiple difficulties in power battery recycling to be solved[N]. China Energy News, 2023-02-20(5). DOI:10.28693/n.cnki.nshca.2023.000276.

    Google Scholar

    [33] 湖北省人民政府. 宁德时代邦普一体化新能源产业园邦普循环项目试产-邦普时代项目开工[EB/OL]. 2022, 09: https://www.hubei.gov.cn/hbfb/rdgz/202209/t20220928_4325062.shtml.

    Google Scholar

    People’s Government of Hubei Province. Ningde Times integrated new energy industrial park Bangpu cycle project trial production - Bangpu times project commences[EB/OL]. 2022, 09: https://www.hubei.gov.cn/hbfb/rdgz/202209/t20220928_4325 06 2.shtml.

    Google Scholar

    [34] 牟思宇, 谢宇斌. 我国废旧动力电池回收利用的发展现状、存在问题及对策建议[J]. 有色金属工程, 2022, 12(12):153-158. MOU S Y, XIE Y B. Current status, existing problems and development suggestions for recycling and utilization of waste power batteries[J]. Nonferroous Metals Engineering, 2022, 12(12):153-158. doi: 10.3969/j.issn.2095-1744.2022.12.019

    CrossRef Google Scholar

    MOU S Y, XIE Y B. Current status, existing problems and development suggestions for recycling and utilization of waste power batteries[J]. Nonferroous Metals Engineering, 2022, 12(12): 153-158. doi: 10.3969/j.issn.2095-1744.2022.12.019

    CrossRef Google Scholar

    [35] GIES, ERICA. Lazarus batteries[J]. Nature, 2015.

    Google Scholar

    [36] SONG X, HU T, LIANG C, et al. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method[J]. RSC Advances, 2017, 7(8):4783-4790. doi: 10.1039/C6RA27210J

    CrossRef Google Scholar

    [37] LI X, ZHANG J, SONG D, et al. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J]. Journal of Power Sources, 2017, 345:78-84. doi: 10.1016/j.jpowsour.2017.01.118

    CrossRef Google Scholar

    [38] 梁力勃, 杨生龙, 罗茂枭, 等. 高温固相法再生废旧磷酸铁锂电池正极材料[J]. 矿冶工程, 2021, 41(3):120-123+128. LIANG L B, YANG S L, LUO M X, et al. Regeneration of cathode materials in spent lithium iron phosphate batteriesby using high temperature solid-phase method[J]. Mining and Metallurgical Engineering, 2021, 41(3):120-123+128. doi: 10.3969/j.issn.0253-6099.2021.03.029

    CrossRef Google Scholar

    LIANG L B, YANG S L, LUO M X, et al. Regeneration of cathode materials in spent lithium iron phosphate batteriesby using high temperature solid-phase method[J]. Mining and Metallurgical Engineering, 2021, 41(3): 120-123+128. doi: 10.3969/j.issn.0253-6099.2021.03.029

    CrossRef Google Scholar

    [39] SONG W, LIU J, YOU L, et al. Re-synthesis of nano-structured LiFePO4/graphene composite derived from spent lithium-ion battery for booming electric vehicle application[J]. Journal of Power Sources, 2019, 419:192-202. doi: 10.1016/j.jpowsour.2019.02.065

    CrossRef Google Scholar

    [40] GUO Y, LI F, ZHU H, et al. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)[J]. Waste Manage, 2016, 51:227-233. doi: 10.1016/j.wasman.2015.11.036

    CrossRef Google Scholar

    [41] 杨生龙, 杨凯雲, 范小萍, 等. 废旧锂离子电池负极片的硫酸浸出回收研究[J]. 电源技术, 2020, 44(3):364-366+376. YANG S L, YANG K Y, FAN X P, et al. Recycling of negative electrode sheets of spent lithium ion batteries by sulfuric acid leaching[J]. Chinese Journal of Power Sources, 2020, 44(3):364-366+376. doi: 10.3969/j.issn.1002-087X.2020.03.015

    CrossRef Google Scholar

    YANG S L, YANG K Y, FAN X P, et al. Recycling of negative electrode sheets of spent lithium ion batteries by sulfuric acid leaching[J]. Chinese Journal of Power Sources, 2020, 44(3): 364-366+376. doi: 10.3969/j.issn.1002-087X.2020.03.015

    CrossRef Google Scholar

    [42] 张群斌, 董陶, 李晶晶, 等. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, 11(9):2798-2810. ZHANG Q B, DONG T, LI J J, et al. Research progress on the recovery and high-value utilization of spent electrolyte from lithium ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9):2798-2810. doi: 10.19799/j.cnki.2095-4239.2022.0338

    CrossRef Google Scholar

    ZHANG J B, DONG T, LI J J, et al. Research progress on the recovery and high-value utilization of spent electrolyte from lithium ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. doi: 10.19799/j.cnki.2095-4239.2022.0338

    CrossRef Google Scholar

    [43] MU D Y, LIU Y L, LI R H, et al. Transcritical CO2 extraction of electrolytes for lithium-ion batteries: optimization of the recycling process and quality–quantity variation[J]. New Journal of Chemistry, 2017, 41(15):7177-7185. doi: 10.1039/C7NJ00771J

    CrossRef Google Scholar

    [44] 严红. 废旧锂离子电池电解液的回收方法: CN104282962B[P]. 2017-03-08.

    Google Scholar

    YAN H. Method for recycling electrolyte from waste lithium-ion batteries: CN104282962B[P]. 2017-03-08.

    Google Scholar

    [45] HE K, ZHANG Z Y, ALAI L, et al. A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries[J]. J Hazard Mater, 2019, 375:43-51. doi: 10.1016/j.jhazmat.2019.03.120

    CrossRef Google Scholar

    [46] ZHU Y, DING Q, ZHAO Y, et al. Study on the process of harmless treatment of residual electrolyte in battery disassembly[J]. Waste Manag Res, 2020, 38(11):1295-1300. doi: 10.1177/0734242X20914752

    CrossRef Google Scholar

    [47] 林浩志, 平田浩一郎, 鹤卷英范, 等. 含氟电解液的处理方法: CN105594056B[P]. 2017-07-28.

    Google Scholar

    Hayashi H, Hirata K, Tsurumaki E, et al. Treatment methods for fluoride containing electrolytes: CN105594056B[P]. 2017-07-28.

    Google Scholar

    [48] SHARIF K M, RAHMAN M M, AZMIR J, et al. Experimental design of supercritical fluid extraction - A review[J]. Journal of Food Engineering, 2014, 124:105-116. doi: 10.1016/j.jfoodeng.2013.10.003

    CrossRef Google Scholar

    [49] 穆德颖, 刘铸, 金珊, 等. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7):950-965. MU D Y, LIU Z, JIN S, et al. The recovery and recycling of cathode materials and electrolyte from spent lithium ion batteries in full process[J]. Progress in Chemistry, 2020, 32(7):950-965.

    Google Scholar

    MU D Y, LIU Z, JIN S, et al. The recovery and recycling of cathode materials and electrolyte from spent lithium ion batteries in full process[J]. Progress in Chemistry, 2020, 32(7): 950-965.

    Google Scholar

    [50] Sloop S E . System and method for removing an electrolyte from an energy storage and/or conversion device using a supercritical fluid: EP, EP1472756 A1[P].

    Google Scholar

    [51] 胡家佳, 王晨旭, 曹利娜. 一种废旧锂离子电池中六氟磷酸锂回收方法: CN106025420A[P]. 2016-10-12.

    Google Scholar

    HU J J, WANG C X, CAO L N. A method for recovering lithium hexafluorophosphate from waste lithium-ion batteries: CN106025420A[P]. 2016-10-12.

    Google Scholar

    [52] 赵煜娟, 孙玉成, 纪常伟, 等. 一种废旧锂离子电池电解液回收处理方法: CN103825065B[P]. 2016-11-16.

    Google Scholar

    ZHAO Y J, SUN Y C, JI C W, et al. A method for recycling and treating electrolyte from waste lithium ion batteries, Beijing: CN103825065B[P]. 2016-11-16.

    Google Scholar

    [53] 张俊喜, 刘蔚, 王昆仑. 一种废旧电池电解液回收利用方法: CN109193062B[P]. 2021-04-02.

    Google Scholar

    ZHANG J X, LIU W, WANG K L. A method for recycling and utilizing electrolyte from waste batteries: CN109193062B[P]. 2021-04-02.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(2)

Article Metrics

Article views(3970) PDF downloads(1640) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint