Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 No. 3
Article Contents

Wang Ting, Zhao Jianjun, Tao Le, Tian Rui, Zou Wenjie. Research Progress of Mill Load Detection and Modeling Methods[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 107-111, 118. doi: 10.3969/j.issn.1000-6532.2023.03.018
Citation: Wang Ting, Zhao Jianjun, Tao Le, Tian Rui, Zou Wenjie. Research Progress of Mill Load Detection and Modeling Methods[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 107-111, 118. doi: 10.3969/j.issn.1000-6532.2023.03.018

Research Progress of Mill Load Detection and Modeling Methods

More Information
  • This is a paper in the field of mining engineering. With the increasing demands for energy conservation and consumption reduction in mineral processing plants, ball mill load measurement is the key technology to realize mill control and optimize the grinding process. This paper summarizes the measurement methods of mill load in the recent years: differential pressure method, grinding sound method, vibration method, power method, ultrasonic method, indirect detection method based on multi-source signal fusion. Moreover, it summarizes and analyzes the mill load modeling methods that have emerged inrecent years. In the future, the indirect methods of multi-source information fusion will still be the main methods to detect mill load, modeling methods based on improvement of neural network and new online detection methods, as well as the establishment of efficient and accurate load detection models will be the main development direction of mill load detection.

  • 加载中
  • [1] 汤健, 田福庆, 贾美英, 等. 基于频谱数据驱动的旋转机械设备负荷软测量[M]. 北京: 国防工业出版社, 2015.

    Google Scholar

    TANG J, TIAN F Q, JIA M Y, et al. Load soft measurement of rotating machinery and equipment based on spectrum data drive[M]. Beijing: National Defense Industry Press, 2015.

    Google Scholar

    [2] 王泽红, 陈炳辰. 球磨机负荷检测的现状与发展趋势[J]. 中国粉体技术, 2001, 1(1):19-23. WANG Z H, CHEN B C. Current status and development trend of ball mill load detection[J]. China Powder Technology, 2001, 1(1):19-23. doi: 10.3969/j.issn.1008-5548.2001.01.006

    CrossRef Google Scholar

    WANG Z H, CHEN B C. Current status and development trend of ball mill load detection[J]. China Powder Technology, 2001, 1( 1): 19-23. doi: 10.3969/j.issn.1008-5548.2001.01.006

    CrossRef Google Scholar

    [3] 李艳姣. 磨机负荷优化计算与专家控制[D]. 唐山: 河北联合大学, 2014.

    Google Scholar

    LI Y J. Mill load optimization calculation and expert control[D]. Tangshan: Hebei Union University, 2014.

    Google Scholar

    [4] 汤健, 赵立杰, 岳恒, 等. 磨机负荷检测方法研究综述[J]. 控制工程, 2010, 17(5):565-570+574. TANG J, ZHAO L J, YUE H, et al. A review of the research on mill load detection methods[J]. Control Engineering, 2010, 17(5):565-570+574. doi: 10.3969/j.issn.1671-7848.2010.05.001

    CrossRef Google Scholar

    TANG J, ZHAO L J, YUE H, et al. A review of the research on mill load detection methods[J]. Control Engineering, 2010, 17(5): 565-570+574. doi: 10.3969/j.issn.1671-7848.2010.05.001

    CrossRef Google Scholar

    [5] 高纯生, 刘鑫, 谢文涓, 等. 基于EWT-奇异值熵的磨机负荷识别方法[J]. 矿业研究与开发, 2019, 39(11):130-136. GAO C S, LIU X, XIE W J, et al. Mill load identification method based on EWT-singular value entropy[J]. Mining Research and Development, 2019, 39(11):130-136. doi: 10.13827/j.cnki.kyyk.2019.11.026

    CrossRef Google Scholar

    GAO C S, LIU X, XIE W J, et al. Mill load identification method based on EWT-singular value entropy[J]. Mining Research and Development, 2019, 39(11): 130-136. doi: 10.13827/j.cnki.kyyk.2019.11.026

    CrossRef Google Scholar

    [6] B Behera, B K Mishra, C V R Murty. Experimental analysis of charge dynamics in tumbling mills by vibration signature technique[J]. Minerals Engineering, 2006, 20(1).

    Google Scholar

    [7] 郭振宇, 邹国斌, 杨凌凌, 等. 基于DCS采集的振动数据的磨机负荷分析[J]. 有色金属(选矿部分), 2019(4):69-74. GUO Z Y, ZOU G B, YANG L L, et al. Mill load analysis based on vibration data collected by DCS[J]. Nonferrous Metals (Mineral Processing), 2019(4):69-74.

    Google Scholar

    GUO Z Y, ZOU G B, YANG L L, et al. Mill load analysis based on vibration data collected by DCS[J]. Nonferrous Metals (Mineral Processing), 2019(4): 69-74.

    Google Scholar

    [8] Jianquan Shi, Gangquan Si, Shuiwang Li. Feature extraction based on the fractional Fourier transform for vibration signals with application to measuring the load of a tumbling mill[J]. Control Engineering Practice, 2019, 84.

    Google Scholar

    [9] 熊洋. 基于振动特征提取的球磨机负荷预测研究[D]. 赣州: 江西理工大学, 2016.

    Google Scholar

    XIONG Y. Research on load prediction of ball mill based on vibration feature extraction[D]. Ganzhou: Jiangxi University of Science and Technology, 2016.

    Google Scholar

    [10] 刘卓, 柴天佑, 汤健. 基于多尺度振动和振声频谱特征自适应提取与选择的磨机负荷参数软测量[J]. 控制与决策, 2019, 34(12):2603-2610. LIU Z, CHAI T Y, TANG J. Soft measurement of mill load parameters based on adaptive extraction and selection of multi-scale vibration and vibration-acoustic spectrum features[J]. Control and Decision, 2019, 34(12):2603-2610. doi: 10.13195/j.kzyjc.2018.0369

    CrossRef Google Scholar

    LIU Z, CHAI T Y, TANG J. Soft measurement of mill load parameters based on adaptive extraction and selection of multi-scale vibration and vibration-acoustic spectrum features[J]. Control and Decision, 2019, 34(12): 2603-2610 doi: 10.13195/j.kzyjc.2018.0369

    CrossRef Google Scholar

    [11] 汤健,乔俊飞,刘卓,等. 磨矿过程的球磨机研磨机理数值仿真及磨机负荷参数软测量综述[J]. 北京工业大学学报, 2018, 44(11):1459-1470. TANG J, QIAO J F, LIU Z, et al. Numerical simulation of ball mill grinding mechanism for grinding process and review of soft measurement of mill load parameters[J]. Journal of Beijing University of Technology, 2018, 44(11):1459-1470.

    Google Scholar

    11

    Google Scholar

    [12] 王颖洁. 钢球磨煤机料位的软测量及其动态过程建模与控制[D]. 南京: 东南大学, 2005.

    Google Scholar

    WANG Y J. Soft measurement of ball coal mill level and its dynamic process modeling and control[D]. Nanjing: Southeast University, 2005.

    Google Scholar

    [13] 杨志刚, 张杰, 李艳姣. 磨音影响因素分析与磨机负荷检测方法综述[J]. 金属矿山, 2015(2):139-144. YANG Z G, ZHANG J, LI Y J. Analysis of influence factors of grinding sound and review of mill load detection methods[J]. Metal Mine, 2015(2):139-144.

    Google Scholar

    YANG Z G, ZHANG J, LI Y J. Analysis of influence factors of grinding sound and review of mill load detection methods[J]. Metal Mine, 2015(2): 139-144.

    Google Scholar

    [14] 唐耀庚. 模糊逻辑控制在磨机负荷控制中的应用[J]. 电气传动, 2002(5):31-33. TANG Y G. Application of fuzzy logic control in mill load control[J]. Electrical Drive, 2002(5):31-33. doi: 10.3969/j.issn.1001-2095.2002.05.008

    CrossRef Google Scholar

    TANG Y G. Application of fuzzy logic control in mill load control[J]. Electrical Drive, 2002(5): 31-33. doi: 10.3969/j.issn.1001-2095.2002.05.008

    CrossRef Google Scholar

    [15] 郑鉴君. 联合粉磨系统磨机负荷辨识方法研究[D]. 济南: 济南大学, 2015.

    Google Scholar

    ZHENG J J. Research on mill load identification method of combined grinding system[D]. Jinan: University of Jinan, 2015.

    Google Scholar

    [16] 张杰, 王建民, 杨志刚. 承德某选矿厂磨机运行专家系统[J]. 金属矿山, 2013(7):144-148. ZHANG J, WANG J M, YANG Z G. An expert system for mill operation in a concentrator in Chengde[J]. Metal Mine, 2013(7):144-148. doi: 10.3969/j.issn.1001-1250.2013.07.037

    CrossRef Google Scholar

    ZHANG J, WANG J M, YANG Z G. An expert system for mill operation in a concentrator in Chengde[J]. Metal Mine, 2013(7): 144-148. doi: 10.3969/j.issn.1001-1250.2013.07.037

    CrossRef Google Scholar

    [17] 姜德轩. 基于球磨机负荷优化控制的磨音检测[D]. 济南: 济南大学, 2011.

    Google Scholar

    JIANG D X. Grinding sound detection based on ball mill load optimization control[D]. Jinan: University of Jinan, 2011.

    Google Scholar

    [18] 杜江. 高精度智能型磨音测量仪的研制[D]. 重庆: 重庆邮电大学, 2018.

    Google Scholar

    DU J. Development of high-precision intelligent grinding sound measuring instrument[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2018.

    Google Scholar

    [19] 田黎. 一种应用于水泥磨机的新型噪声料位测量系统[C]. 中国硅酸盐学会, 2015: 205-211.

    Google Scholar

    TIAN L. A new type of noise level measurement system applied to cement mills[C]. Chinese Ceramic Society, 2015: 205-211.

    Google Scholar

    [20] 黄成祥, 陈敏, 王庸贵. 球磨机负荷智能监控系统的研究[J]. 机械, 1999(6):8-9+45. HUANG C X, CHEN M, WANG Y G. Research on intelligent monitoring system of ball mill load[J]. Machinery, 1999(6):8-9+45.

    Google Scholar

    HUANG C X, CHEN M, WANG Y G. Research on intelligent monitoring system of ball mill load[J]. Machinery, 1999(6): 8-9+45.

    Google Scholar

    [21] 禤莉明, 何祖威. 采用超声Lamb波测量钢球磨煤机的料位[J]. 动力工程, 2006(6):859-864. XUAN L M, HE Z W. Using ultrasonic Lamb wave to measure the level of steel ball coal mill[J]. Power Engineering, 2006(6):859-864.

    Google Scholar

    XUAN L M, HE Z W. Using ultrasonic Lamb wave to measure the level of steel ball coal mill[J]. Power Engineering, 2006(6): 859-864.

    Google Scholar

    [22] 韩亚辉, 郝成. 关于大量程超声波料位计的算法修正讨论[J]. 价值工程, 2014, 33(25):301-302. HAN Y H, HAO C. Discussion on the algorithm modification of large-range ultrasonic level gauge[J]. Value Engineering, 2014, 33(25):301-302. doi: 10.14018/j.cnki.cn13-1085/n.2014.25.533

    CrossRef Google Scholar

    HAN Y H, HAO C. Discussion on the algorithm modification of large-range ultrasonic level gauge[J]. Value Engineering, 2014, 33(25): 301-302. doi: 10.14018/j.cnki.cn13-1085/n.2014.25.533

    CrossRef Google Scholar

    [23] 罗小燕, 邵凡, 陈慧明, 等. 基于多源信号融合的球磨机负荷预测方法研究[J]. 振动与冲击, 2019, 38(8):232-237. LUO X Y, SHAO F, CHEN H M, et al. Research on load prediction method of ball mill based on multi-source signal fusion[J]. Vibration and Shock, 2019, 38(8):232-237.

    Google Scholar

    LUO X Y, SHAO F, CHEN H M, et al. Research on load prediction method of ball mill based on multi-source signal fusion[J]. Vibration and Shock, 2019, 38(8): 232-237.

    Google Scholar

    [24] 加力康. 基于多源融合技术的转子系统载荷识别研究[D]. 太原: 太原理工大学, 2016.

    Google Scholar

    JIA L K. Research on rotor system load identification based on multi-source fusion technology[D]. Taiyuan: Taiyuan University of Technology, 2016.

    Google Scholar

    [25] 卢小江. 基于多源信号融合技术的球磨机负荷预测方法研究[D]. 赣州: 江西理工大学, 2017.

    Google Scholar

    LU X J. Research on load forecasting method of ball mill based on multi-source signal fusion technology [D]. Ganzhou: Jiangxi University of Science and Technology, 2017.

    Google Scholar

    [26] 蔡改贫, 赵小涛, 张丹荣, 等. 基于ASOS-ELM的湿式球磨机负荷软测量方法[J]. 振动测试与诊断, 2020, 40(1):184-192+211. CAI G P, ZHAO X T, ZHANG D R, et al. ASOS-ELM-based soft load measurement method of wet ball mill[J]. Vibration Testing and Diagnosis, 2020, 40(1):184-192+211.

    Google Scholar

    CAI G P, ZHAO X T, ZHANG D R, et al. ASOS-ELM-based soft load measurement method of wet ball mill[J]. Vibration Testing and Diagnosis, 2020, 40(1): 184-192+211.

    Google Scholar

    [27] 邓展, 王建民. 基于RBF神经网络的磨机负荷智能控制的研究[J]. 矿业研究与开发, 2018, 38(2):89-94. DENG Z, WANG J M. Research on intelligent control of mill load based on RBF neural network[J]. Mining Research and Development, 2018, 38(2):89-94.

    Google Scholar

    DENG Z, WANG J M. Research on intelligent control of mill load based on RBF neural network[J]. Mining Research and Development, 2018, 38(2): 89-94.

    Google Scholar

    [28] 赵立杰, 李彬, 汪滢, 等. 磨机负荷参数快速去相关神经网络集成模型[J]. 控制工程, 2017, 24(9):1952-1957. ZHAO L J, LI B, WANG Y, et al. Neural network integrated model for fast decorrelation of mill load parameters[J]. Control Engineering, 2017, 24(9):1952-1957.

    Google Scholar

    ZHAO L J, LI B, WANG Y, et al. Neural network integrated model for fast decorrelation of mill load parameters[J]. Control Engineering, 2017, 24(9): 1952-1957.

    Google Scholar

    [29] 罗小燕, 戴聪聪, 程铁栋, 等. 基于改进EWT-多尺度熵和KELM的球磨机负荷识别方法[J]. 化工学报, 2020, 71(3):1264-1277. LUO X Y, DAI C C, CHENG T D, et al. Ball mill load identification method based on improved EWT-multi-scale entropy and KELM[J]. CIESC Journal, 2020, 71(3):1264-1277.

    Google Scholar

    LUO X Y, DAI C C, CHENG T D, et al. Ball mill load identification method based on improved EWT-multi-scale entropy and KELM[J]. CIESC Journal, 2020, 71(3): 1264-1277.

    Google Scholar

    [30] 刘志刚, 蔡改贫, 林龙飞, 等. 主元分析的振动频域特征识别与磨机负荷建模研究[J]. 中国钨业, 2016, 31(3):68-73. LIU Z G, CAI G P, LIN L F, et al. Research on vibration frequency domain feature recognition and mill load modeling based on principal component analysis[J]. China Tungsten Industry, 2016, 31(3):68-73. doi: 10.3969/j.issn.1009-0622.2016.03.014

    CrossRef Google Scholar

    LIU Z G, CAI G P, LIN L F, et al. Research on vibration frequency domain feature recognition and mill load modeling based on principal component analysis[J]. China Tungsten Industry, 2016, 31(3): 68-73. doi: 10.3969/j.issn.1009-0622.2016.03.014

    CrossRef Google Scholar

    [31] 司刚全, 李水旺, 石建全, 等. 采用改进果蝇优化算法的最小二乘支持向量机参数优化方法[J]. 西安交通大学学报, 2017, 51(6):14-19. SI G Q, LI S W, SHI J Q, et al. Parameter optimization method of least square support vector machine using improved fruit fly optimization algorithm[J]. Journal of Xi'an Jiaotong University, 2017, 51(6):14-19.

    Google Scholar

    SI G Q, LI S W, SHI J Q, et al. Parameter optimization method of least square support vector machine using improved fruit fly optimization algorithm[J]. Journal of Xi'an Jiaotong University, 2017, 51(6): 14-19.

    Google Scholar

    [32] 赵立杰, 邹世达, 郭烁, 等. 基于正则化随机配置网络的球磨机工况识别[J]. 控制工程, 2020, 27(1):1-7. ZHAO L J, ZOU S D, GUO S, et al. Ball mill working condition recognition based on regularized random configuration network[J]. Control Engineering, 2020, 27(1):1-7. doi: 10.14107/j.cnki.kzgc.20190437

    CrossRef Google Scholar

    ZHAO L J, ZOU S D, GUO S, et al. Ball mill working condition recognition based on regularized random configuration network[J]. Control Engineering, 2020, 27(1): 1-7. doi: 10.14107/j.cnki.kzgc.20190437

    CrossRef Google Scholar

    [33] 刘卓, 柴天佑, 汤健. 一种多尺度球磨机筒体振动频谱分析与建模方法[J]. 东北大学学报(自然科学版), 2015, 36(3):305-308. LIU Z, CHAI T Y, TANG J. A method of frequency spectrum analysis and modeling of multi-scale ball mill barrel vibration[J]. Journal of Northeastern University (Natural Science Edition), 2015, 36(3):305-308. doi: 10.3969/j.issn.1005-3026.2015.03.001

    CrossRef Google Scholar

    LIU Z, CHAI T Y, TANG J. A method of frequency spectrum analysis and modeling of multi-scale ball mill barrel vibration[J]. Journal of Northeastern University (Natural Science Edition), 2015, 36(3): 305-308. doi: 10.3969/j.issn.1005-3026.2015.03.001

    CrossRef Google Scholar

    [34] 蔡改贫, 宗路, 罗小燕, 等. 基于CEEMDAN-云模型特征熵和LSSVM的磨机负荷预测研究[J]. 振动与冲击, 2019, 38(7):128-133. CAI G P, ZONG L, LUO X Y, et al. Research on mill load prediction based on CEEMDAN-cloud model feature entropy and LSSVM[J]. Vibration and Shock, 2019, 38(7):128-133. doi: 10.13465/j.cnki.jvs.2019.07.019

    CrossRef Google Scholar

    CAI G P, ZONG L, LUO X Y, et al. Research on mill load prediction based on CEEMDAN-cloud model feature entropy and LSSVM[J]. Vibration and Shock, 2019, 38(7): 128-133. doi: 10.13465/j.cnki.jvs.2019.07.019

    CrossRef Google Scholar

    [35] 刘吉顺, 杨丽荣, 罗小燕, 等. CEEMDAN和样本熵相结合的球磨机负荷识别方法[J/OL]. 机械科学与技术: 1-8.

    Google Scholar

    LIU J S, YANG L R, LUO X Y, et al. Load identification method of ball mill based on CEEMDAN and sample entropy[J/OL]. Mechanical Science and Technology: 1-8.

    Google Scholar

    [36] 刘卓, 汤健, 柴天佑, 等. 基于多模态特征子集选择性集成建模的磨机负荷参数预测方法[J/OL]. 自动化学报: 1-15.

    Google Scholar

    LIU Z, TANG J, CHAI T Y, et al. A method for predicting mill load parameters based on selective integrated modeling of multi-modal feature subsets[J/OL]. Acta Automatica Sinica: 1-15

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(1576) PDF downloads(300) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint