Citation: | Wang Bin, Wang Caili, Yang Runquan, Wang Huaifa. Properties of Fly Ash Filling in Nylon 6[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(3): 88-92. doi: 10.3969/j.issn.1000-6532.2023.03.015 |
This is a paper in the field of mineral materials. Fly ash (-2.6 μm) was used as raw material and calcined in muffle furnace at 815 ℃ for 2 h to obtain the calcined fly ash. The micro-morphology, EDS spectrum, particle size, infrared spectrum, phase composition and specific surface area-aperture of fly ash and calcined fly ash were characterized by SEM, EDS, XRF, FTIR, XRD and BET. The nylon 6/calcined fly ash composite was prepared by filling nylon 6 with 5% calcined fly ash, the tensile section of pure nylon 6 and the composite was analyzed by scanning electron microscope, and the mechanical properties, melting index and heat distortion temperature of the composite were tested. The results show that the calcination has little effect on the structure of fly ash, just remove the carbon of surface; Calcined fly ash filling in nylon 6 will not cause internal stress; Compared with the pure nylon 6, the nylon 6/calcined fly ash composite has significantly improved properties except the impact strength and melt index, in which the tensile strength, bending strength, bending modulus, bending modulus and heat distortion temperature are increased by 7.7 MPa, 26.9 MPa, 284 MPa and 46.2 ℃, respectively.
[1] | 邹萍. 粉煤灰水热合成法制备4A型分子筛研究进展[J]. 矿产综合利用, 2020(3):33-39. ZOU P. Research development of 4A zeolite preparation from coal fly ash by hydrothermal synthesis method[J]. Multipurpose Utilization of Mineral Resources, 2020(3):33-39. ZOU P. Research development of 4A zeolite preparation from coal fly ash by hydrothermal synthesis method[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 33-39. |
[2] | 于成龙, 熊楠, 宋杰, 等. 近20 年来中国利用粉煤灰合成分子筛研究进展[J]. 矿产综合利用, 2020(4):26-35. YU C L, XIONG N, SONG J, et al. Development of molecular sieves composition from fly ash in China in the last two decades[J]. Multipurpose Utilization of Mineral Resources, 2020(4):26-35. doi: 10.3969/j.issn.1000-6532.2020.04.005 YU C L, XIONG N, SONG J, et al. Development of molecular sieves composition from fly ash in China in the last two decades [J]. Multipurpose Utilization of Mineral Resources, 2020(4): 26-35. doi: 10.3969/j.issn.1000-6532.2020.04.005 |
[3] | 曾威, 陈琪. 细菌纤维素增强PA6/GF复合材料的力学性能研究[J]. 塑料科技, 2018, 46(2):36-40. ZENG W, CHEN Q. Study on mechanical properties of GF/PA6 composites reinforced by bacterial cellulose[J]. Plastics Science and Technology, 2018, 46(2):36-40. doi: 10.15925/j.cnki.issn1005-3360.2018.02.003 ZENG W, CHEN Q. Study on Mechanical Properties of GF/PA6 Composites Reinforced by Bacterial Cellulose[J]. Plastics Science and Technology, 2018, 46(2): 36-40. doi: 10.15925/j.cnki.issn1005-3360.2018.02.003 |
[4] | Buczko Aleksandra, Stelzig Timea, Bommer Lea, et al. Bridged DOPO derivatives as flame retardants for PA6[J]. Polymer Degradation and Stability, 2014, 107:158-165. doi: 10.1016/j.polymdegradstab.2014.05.017 |
[5] | 王佳臻, 蒯平宇, 刘会敏, 等. 国内尼龙6、尼龙66产业的发展现状[J]. 合成纤维, 2021, 50(3):8-11. WANG J Z, KUAI P Y, LIU H M, et al. Development status of nylon 6 and nylon 66 in China[J]. Synthetic fiber in China, 2021, 50(3):8-11. doi: 10.16090/j.cnki.hcxw.2021.03.003 WANG J Z, KUAI P Y, LIU H M, et al. Development status of nylon 6 and nylon 66 in China[J]. Synthetic fiber in China, 2021, 50(3): 8-11. doi: 10.16090/j.cnki.hcxw.2021.03.003 |
[6] | 贾义军, 毕立, 陈国军, 等. 电子元器件壳体用MCA阻燃尼龙6工程塑料研制[J]. 工程塑料应用, 2020, 48(5):34-51. JIA Y J, BI L, CHEN G J, et al. Development of MCA flame retardant nylon 6 for electronic appliance[J]. Engineering Plastics Application, 2020, 48(5):34-51. doi: 10.3969/j.issn.1001-3539.2020.05.007 JIA Y J, BI L, CHEN G J, et al. Development of MCA flame retardant nylon 6 for electronic appliance[J]. Engineering Plastics Application, 2020, 48(5): 34-51. doi: 10.3969/j.issn.1001-3539.2020.05.007 |
[7] | Porabka Anna, Jurkowski Kamil, Laska Jadwiga. Fly ash used as a reinforcing and flame-retardant filler in low-density polyethylene[J]. Polimery, 2015, 60(4):251-257. doi: 10.14314/polimery.2015.251 |
[8] | 李苗苗, 陈平, 李建超. 粉煤灰微珠含量与粒径级配比对环氧树脂基复合材料弯曲性能的影响[J]. 复合材料学报, 2017, 34(2):345-351. LI M M, CHEN P, LI J C. Effect of content and grading ratios of fly ash cenospheres on the flexural properties of the flexural properties of the epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2017, 34(2):345-351. doi: 10.13801/j.cnki.fhclxb.20160612.004 LI M M, CHEN P, LI J C. Effect of content and grading ratios of fly ash cenospheres on the flexural properties of the flexural properties of the epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2017, 34(2): 345-351. doi: 10.13801/j.cnki.fhclxb.20160612.004 |
[9] | Yang Y F, Gai G S, Cai Z F, et al. Surface modification of purified fly ash and application in polymer[J]. Journal of Hazardous Materials, 2006, 133(1-3):276-282. doi: 10.1016/j.jhazmat.2005.10.028 |
[10] | 申柯娅, 王睿, 曾群, 等. 方石英的制备及其热性能测试[J]. 铸造技术, 2013, 34(3):324-326. SHEN K Y, WAN R, ZENG Q, et al. Preparation of cristobalite and testing of its thermal characteristics[J]. Foundry Technology, 2013, 34(3):324-326. SHEN K Y, WAN R, ZENG Q, et al. Preparation of cristobalite and testing of its thermal characteristics[J]. Foundry Technology, 2013, 34(3): 324-326. |
[11] | 王彩丽, 王静, 杨润全, 等. 核壳结构粉煤灰基复合粉体制备及填充聚合物的性能[J]. 高分子材料科学与工程, 2020, 36(8):87-92. WANG C L, WANG J, YANG R Q, et al. Preparation of core-shell fly ash based composite and its application in filling polymer[J]. Polymer Materials Science & Engineering, 2020, 36(8):87-92. doi: 10.16865/j.cnki.1000-7555.2020.0189 WANG C L, WANG J, YANG R Q, et al. Preparation of core-shell fly ash based composite and its application in filling polymer[J]. Polymer Materials Science & Engineering, 2020, 36(8): 87-92. doi: 10.16865/j.cnki.1000-7555.2020.0189 |
SEM of fly ash (a) and calcined fly ash (b)
EDS of fly ash(a) and calcined fly ash(b)
Particle size distribution of calcined fly ash
XRD of fly ash and calcined fly ash
FTIR of fly ash and calcined fly ash
SEM of tensile cross sections of pure nylon 6 (a) and calcined fly ash filled nylon 6 composites (b), (c) and (d)