Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 No. 5
Article Contents

Wang Yutong, Ai Guanghua, Xiao Guosheng. Research Progress of Microbial Technology in Mineral Processing and Metallurgy[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 91-95, 108. doi: 10.3969/j.issn.1000-6532.2022.05.016
Citation: Wang Yutong, Ai Guanghua, Xiao Guosheng. Research Progress of Microbial Technology in Mineral Processing and Metallurgy[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 91-95, 108. doi: 10.3969/j.issn.1000-6532.2022.05.016

Research Progress of Microbial Technology in Mineral Processing and Metallurgy

  • Due to the gradual exploitation of minerals and the increasing shortage of high-quality mineral resources, the separation and recovery of "poor, fine and miscellaneous" minerals need to be solved urgently, and people's requirements for mineral processing technology are higher and higher. Some special microorganisms themselves or their metabolites can dissolve the ions in minerals or change the surface properties of minerals. Moreover, compared with traditional mineral processing reagents and leaching agents, microorganisms have the advantages of lower cost and less environmental pollution. Therefore, the micro biological flotation and microbial metallurgy technology has been developed rapidly. This paper introduces the research progress of bioleaching, oxidation, decomposition, adsorption, chemical reaction and cell surface chemistry of microorganisms at home and abroad.

  • 加载中
  • [1] 杨慧芬, 孙启伟, 马文凯, 等. 铁矾渣中有价金属的微生物矿化-浮选回收可能性和前景[J]. 矿产综合利用, 2020(1):43-46. doi: 10.3969/j.issn.1000-6532.2020.01.008

    CrossRef Google Scholar

    YANG H F, SUN Q W, MA W K, et al. Possibility and prospect of recovery of valuable metals in jarosite residues using microorganism mineralization-flotation Method[J]. Multipurpose Utilization of Mineral Resources, 2020(1):43-46. doi: 10.3969/j.issn.1000-6532.2020.01.008

    CrossRef Google Scholar

    [2] 刘明实, 万选志, 刘子龙, 等. 甲玛地区角岩矿微生物浸出的实验研究[J]. 矿产综合利用, 2020(3):89-93. doi: 10.3969/j.issn.1000-6532.2020.03.014

    CrossRef Google Scholar

    LIU M S, WAN X Z, LIU Z L, et al. Experimental study on the hornfels ore’s microbiological leaching in Jiama region[J]. Multipurpose Utilization of Mineral Resources, 2020(3):89-93. doi: 10.3969/j.issn.1000-6532.2020.03.014

    CrossRef Google Scholar

    [3] 雷英杰, 艾翠玲, 张国春, 等. 微生物浸出技术及其研究进展[J]. 广州化工, 2016, 44(14):12-14. doi: 10.3969/j.issn.1001-9677.2016.14.006

    CrossRef Google Scholar

    LEI Y J, AI C L, ZHANG G C, et al. Microbial leaching technology and its research progress[J]. Guangzhou Chemical Industry, 2016, 44(14):12-14. doi: 10.3969/j.issn.1001-9677.2016.14.006

    CrossRef Google Scholar

    [4] Weimin Zeng, Guanzhou Qiu, Hongbo Zhou, et al. Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate[J]. Hydrometallurgy, 2009, 100(3):177-180.

    Google Scholar

    [5] 梁昱婷, 韩俊伟, 艾郴兵, 等. 两种极端嗜热古菌对黄铜矿的吸附和浸出行为(英文)[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(12):2538-2544. doi: 10.1016/S1003-6326(18)64900-3

    CrossRef Google Scholar

    LIANG Y T, HAN J W, AI C B, et al. Adsorption and leaching behavior of chalcopyrite by two extremely thermophilic archaea[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(12):2538-2544. doi: 10.1016/S1003-6326(18)64900-3

    CrossRef Google Scholar

    [6] 郝福来. 生物冶金技术的发展及其在黄金行业中的应用现状[J]. 黄金, 2019, 40(5):51-56. doi: 10.11792/hj20190511

    CrossRef Google Scholar

    HAO F L. Development of bio metallurgy technology and its application in gold industry[J]. Gold, 2019, 40(5):51-56. doi: 10.11792/hj20190511

    CrossRef Google Scholar

    [7] 李学亚, 叶茜. 微生物冶金技术及其应用[J]. 矿业工程, 2006(2):49-51. doi: 10.3969/j.issn.1671-8550.2006.02.023

    CrossRef Google Scholar

    LI X Y, YE X. Microbial metallurgy technology and its application[J]. Mining Engineering, 2006(2):49-51. doi: 10.3969/j.issn.1671-8550.2006.02.023

    CrossRef Google Scholar

    [8] 王传凯, 李响, 张永奎, 等. 喷淋塔中固定化Acidithiobacillusferrooxidans对Fe~(2+)的生物氧化特性研究[J]. 矿产综合利用, 2018(2):130-134. doi: 10.3969/j.issn.1000-6532.2018.02.029

    CrossRef Google Scholar

    WANG C K, LI X, ZHANG Y K, et al. Study on biological oxidation characteristics of Fe~(2+) by immobilized acidithiobacillusferrooxidans in spray tower[J]. Multipurpose Utilization of Mineral Resources, 2018(2):130-134. doi: 10.3969/j.issn.1000-6532.2018.02.029

    CrossRef Google Scholar

    [9] 陈茂春. 细菌分解磷矿基础研究[D]. 成都: 四川大学, 2001.

    Google Scholar

    CHEN M C. Basic research on bacterial decomposition of phosphate rock[D]. Chengdu: Sichuan University, 2001.

    Google Scholar

    [10] Halder A K, Mishra A K, Bhattacharyya P, et al. Solubilization of rock phosphate by rhizobium and bradyrhizobium[J]. Journal of General & Applied Microbiology, 1990, 36(2):81-92.

    Google Scholar

    [11] Varsha Narsian, Jugnu Thakkar, H H Patel. Mineral phosphate solubilization by Aspergillus aculeatus[J]. Indian Journal of Experimental Biology, 1995, 33(2):91-93.

    Google Scholar

    [12] E Nahas, D A Banzatto, L C Assis. Fluorapatitesolubilization by aspergillus niger in vinassemedium[J]. Pergamon, 1990, 22(8):1097-1101.

    Google Scholar

    [13] Dwyer, Bruckard, Rea, et al. Bioflotation and bioflocculation review: microorganisms relevant for mineral beneficiation[J]. Mineral Processing and Extractive Metallurgy, 2012, 121(2).

    Google Scholar

    [14] 蒋鸿辉, 王琨. 生物选矿的应用研究现状及发展方向[J]. 中国矿业, 2005(9):76-78. doi: 10.3969/j.issn.1004-4051.2005.09.022

    CrossRef Google Scholar

    JIANG H H, WANG K. Application research status and development direction of biological beneficiation[J]. China Mining, 2005(9):76-78. doi: 10.3969/j.issn.1004-4051.2005.09.022

    CrossRef Google Scholar

    [15] Kianoush Barani, Masoud Kalantari. Recovery of kaolinite from tailings of zonouz kaolin-washing plant by flotation-flocculation method[J]. Journal of Materials Research and Technology, 2018, 7(2).

    Google Scholar

    [16] N A Abdel-Khalek, K A Selim, K E Yassin, et al. Bio-flotation of egyptian phosphate using desulfvibrio desulfuricans bacteria[J]. Journal of Mining World Express, 2015:4.

    Google Scholar

    [17] A Vilinska, K Hanumantha Rao. Leptosririllumferrooxidans-sulfide mineral interactions with reference to bioflotation and bioflocculation[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6):1403-1409. doi: 10.1016/S1003-6326(09)60016-9

    CrossRef Google Scholar

    [18] Ross W Smith, Manoranjan Misra, Shuzhong Chen. Adsorption of a hydrophobic bacterium onto hematite: Implications in the froth flotation of the mineral[J]. Journal of Industrial Microbiology, 2005, 11(2).

    Google Scholar

    [19] Nagui A Abdel-Khalek, Khaled A Seiem, Samah E Mohammed, et al. Interaction between kaolinite and staphylococcus gallinarum bacteria[J]. Journal of Mining World Express, 2014:3.

    Google Scholar

    [20] Beech Iwona B, Sunner Jan. Biocorrosion: towards understanding interactions between biofilms and metals[J]. Current opinion inbiotechnology, 2004, 15(3):181-186. doi: 10.1016/j.copbio.2004.05.001

    CrossRef Google Scholar

    [21] Agnieszka M, Didyk, Sadowski, et al. Flotation of serpentinite and quartz using biosurfactants [J]. Physicochemical Problems of Mineral Processing, 2012.

    Google Scholar

    [22] Swaranjit Singh Cameotra, Randhir S Makkar , Biosurfactant-enhanced bioremediation of hydrophobic pollutants[J]. Pure and Applied Chemistry, 2013, 82(1).

    Google Scholar

    [23] Yelloji Rao, M K Natarajan, et al. Effect of biotreatment with thiobacillusferrooxidans on the floatability of sphalerite and galena[J]. Mining, Metallurgy & Exploration, 1992, 9(2):95-100.

    Google Scholar

    [24] E Amini, M Oliazadeh, M Kolahdoozan. Kinetic comparison of biological and conventional flotation of coal[J]. Minerals Engineering, 2009.

    Google Scholar

    [25] Päivi Kinnunen, Hanna Miettinen, Malin Bomberg. Review of potential microbial effects on flotation[J]. Minerals, 2020: 10(6).

    Google Scholar

    [26] H Sarvamangala, K A Natarajan. Microbially induced flotation of galena and quartz from pyrite[J]. Advanced Materials Research, 2009(8):35.

    Google Scholar

    [27] 杨慧芬, 李甜, 唐琼瑶, 等. 浮选难选赤铁矿的微生物捕收剂的筛选及性能评价[J]. 中南大学学报(自然科学版), 2013, 44(11):4371-4378.

    Google Scholar

    YANG H F, LI T, TANG Q Y, et al. Screening and performance evaluation of microbial collectors for flotation of refractory hematite[J]. Journal of Central South University (Natural Science Edition), 2013, 44(11):4371-4378.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2422) PDF downloads(411) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint