Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 No. 5
Article Contents

He Fei, Gao Likun, Rao Bing, Shen Hairong, Peng Kebo, Gao Guangyan, Zhang Ming. Research Progress on Lithium Extraction and Comprehensive Utilization from Lepidolite[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 83-90. doi: 10.3969/j.issn.1000-6532.2022.05.015
Citation: He Fei, Gao Likun, Rao Bing, Shen Hairong, Peng Kebo, Gao Guangyan, Zhang Ming. Research Progress on Lithium Extraction and Comprehensive Utilization from Lepidolite[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 83-90. doi: 10.3969/j.issn.1000-6532.2022.05.015

Research Progress on Lithium Extraction and Comprehensive Utilization from Lepidolite

More Information
  • Lithium is an important strategic metal resource. With the rapid development of the electronic chemical industry, the demand for lithium is gradually increasing. Due to the scarcity of primary resources, lepidolite is one of the main sources of lithium extraction products. The clean, efficient and comprehensive utilization of lithium extraction from ore is the focus of research in this field. Based on the understanding of the use of lithium products, the attached deposits and the composition and structural characteristics of their lepidolite, several methods and extraction principles for the comprehensive recovery of lithium and its valuable metals from lepidolite are discussed and compared. The advantages and disadvantages of various process methods are discussed. The acid process technology is simple and mature, and the cost is relatively low, but its application is limited by excessive impurities in the leaching solution; the alkaline process can reduce energy consumption, but in terms of reaction mechanism, process optimization, equipment corrosion, reagent recovery and safety control, etc. More work needs to be done; the salt method or high-pressure steam method consumes a lot of energy, but can reduce the impurity content; removing aluminum and fluorine from the lepidolite can reduce the impurities in lithium. In the future, efforts should be made to explore low-cost, high-efficiency, and environmentally friendly recycling processes to achieve efficient recycling of lithium and valuable metals in lepidolite.

  • 加载中
  • [1] 吴西顺, 王登红, 黄文斌, 等. 全球锂矿及伴生铍铌钽的采选冶技术发展趋势[J]. 矿产综合利用, 2019(1):1-6. doi: 10.3969/j.issn.1000-6532.2019.01.001

    CrossRef Google Scholar

    WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2019(1):1-6. doi: 10.3969/j.issn.1000-6532.2019.01.001

    CrossRef Google Scholar

    [2] 吴西顺, 孙艳, 王登红, 等. 国际锂矿开发技术现状、革新及展望[J]. 矿产综合利用, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019

    CrossRef Google Scholar

    WU X S, SUN Y, WANG D H, et al. International lithium mine utilization technology: current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019

    CrossRef Google Scholar

    [3] 李金龙, 何亚群, 付元鹏, 等. 废弃锂离子电池正极材料酸浸出试验研究[J]. 矿产综合利用, 2020(2):128-134. doi: 10.3969/j.issn.1000-6532.2020.02.023

    CrossRef Google Scholar

    LI J L, HE Y Q, FU Y P, et al. Study on leaching cathode materials of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources, 2020(2):128-134. doi: 10.3969/j.issn.1000-6532.2020.02.023

    CrossRef Google Scholar

    [4] Wouters, J, Grepioni, et al. Novel pharmaceutical compositions through co-crystallization of racetams and Li+ salts[J]. Crystengcomm, 2013.

    Google Scholar

    [5] Kostrivas A, Lippold J C. Weldability of Li-bearing aluminium alloys[J]. Metallurgical Reviews, 1999, 44(6):217-237. doi: 10.1179/095066099101528289

    CrossRef Google Scholar

    [6] Talens Peir L, Villalba M Ndez G, Ayres R U. Lithium: Sources, production, uses, and recovery outlook[J]. JOM (Warrendale, Pa. :1989), 2013, 65(8):986-996.

    Google Scholar

    [7] Deng Hong Wang, et al. Research and exploration progress on lithium deposits in China[J]. China Geology, 2020, 31:137-152.

    Google Scholar

    [8] 朱文龙, 黄万抚. 国内外锂矿物资源概况及其选矿工艺综述[J]. 现代矿业, 2010, 26(7):1-4. doi: 10.3969/j.issn.1674-6082.2010.07.001

    CrossRef Google Scholar

    ZHU W L, HUANG W F. Overview of lithium mineral resources at home and abroad and its beneficiation technology[J]. Modern Mining, 2010, 26(7):1-4. doi: 10.3969/j.issn.1674-6082.2010.07.001

    CrossRef Google Scholar

    [9] 程仁举, 李成秀, 刘星, 等. 川西某伟晶岩型锂辉石矿浮选试验研究[J]. 矿产综合利用, 2020(6):148-152. doi: 10.3969/j.issn.1000-6532.2020.06.025

    CrossRef Google Scholar

    CHENG R J, LI C X, LIU X, et al. Experimental research on the flotation of a pegmatite type spodumene ore in Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2020(6):148-152. doi: 10.3969/j.issn.1000-6532.2020.06.025

    CrossRef Google Scholar

    [10] Bulletin, 2017 M. Chinese EV boom to spur lithium capacity growth in 2018 (2017)

    Google Scholar

    [11] Ogorodova L, I. Kiseleva, L. Melchakova. Thermodynamic properties of lithium micas[J]. Geochemistry International, 2010, 48(4):415-418. doi: 10.1134/S0016702910040117

    CrossRef Google Scholar

    [12] Hui Guo, et al. Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method[J]. Hydrometallurgy 183(2019): 9-19.

    Google Scholar

    [13] Kuang G, Li H, Hu S, et al. Recovery of aluminium and lithium from gypsum residue obtained in the process of lithium extraction from lepidolite[J]. Hydrometallurgy, 2015, 157:214-218. doi: 10.1016/j.hydromet.2015.08.020

    CrossRef Google Scholar

    [14] 冯文平, 谢晶磊, 汤建良, 等. 硫酸浸取锂云母提锂方法的研究[J]. 精细化工中间体, 2016, 46(3):66-69. doi: 10.19342/j.cnki.issn.1009-9212.2016.03.017

    CrossRef Google Scholar

    FENG W P, XIE J L, TANG J L, et al. Study on the method of extracting lithium from lepidolite with sulfuric acid[J]. Fine Chemical Intermediates, 2016, 46(3):66-69. doi: 10.19342/j.cnki.issn.1009-9212.2016.03.017

    CrossRef Google Scholar

    [15] Leemann A, Saout G L, Winnefeld F, et al. Alkali–silica reaction: the influence of calcium on silica dissolution and the formation of reaction products[J]. Journal of the American Ceramic Society, 2011, 94(4):1243-1249. doi: 10.1111/j.1551-2916.2010.04202.x

    CrossRef Google Scholar

    [16] 李良彬, 胡耐根, 黄学武, 等. 硫酸法锂云母提锂工艺中精硫酸锂溶液的生产方法: CN, 200610145362.5 [P]. 2008.

    Google Scholar

    LI L B, HU N G, HUANG X W, et al. Production method of refined lithium sulfate solution in the process of extracting lithium from lepidolite by sulfuric acid method: CN, 200610145362.5 [P]. 2008.

    Google Scholar

    [17] 赵寻, 杨静, 马鸿文, 等. 硫酸介质中锂云母分解反应动力学[J]. 中国有色金属学报, 2015, 25(9):2588-2595. doi: 10.19476/j.ysxb.1004.0609.2015.09.035

    CrossRef Google Scholar

    ZHAO X, YANG J, MA H W, et al. The decomposition reaction kinetics of lepidolite in sulfuric acid medium[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(9):2588-2595. doi: 10.19476/j.ysxb.1004.0609.2015.09.035

    CrossRef Google Scholar

    [18] Vieceli N, Nogueira C A, Pereira M F C, et al. Recovery of lithium carbonate by acid digestion and hydrometallurgical processing from mechanically activated lepidolite[J]. Hydrometallurgy, 2017:S0304386X17304413.

    Google Scholar

    [19] Zhang X. Energy-efficient and simultaneous extraction of lithium, rubidium and cesium from lepidolite concentrate via sulfuric acid baking and water leaching[J]. Hydrometallurgy, 2019.

    Google Scholar

    [20] 裴文涛. 锂云母氟化学法多相反应器提锂新技术研究[D]. 福州: 福州大学, 2017.

    Google Scholar

    PEI W T. Research on new technology of lithium extraction from lepidolite fluoride chemical multiphase reactor[D]. Fuzhou: Fuzhou University, 2017.

    Google Scholar

    [21] Kumar M, Babu M N, Mankhand T R, et al. Precipitation of sodium silicofluoride (Na2SiF6) and cryolite (Na3AlF6) from HF/HCl leach liquors of alumino-silicates[J]. Hydrometallurgy, 2010, 104(2):304-307. doi: 10.1016/j.hydromet.2010.05.014

    CrossRef Google Scholar

    [22] Rosales G D, Pinna E G, Suarez D S, et al. Recovery process of Li, Al and Si from lepidolite by leaching with HF[J]. Minerals, 2017, 7(3):36. doi: 10.3390/min7030036

    CrossRef Google Scholar

    [23] Meshram P, Pandey B D, Mankhand T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review[J]. Hydrometallurgy, 2014, 150:192-208.

    Google Scholar

    [24] 李军, 朱庆山, 李洪钟. 典型含锂矿物焙烧提锂研究进展[J]. 中国科学:化学, 2017, 47(11):1273-1283.

    Google Scholar

    LI J, ZHU Q S, LI H Z. Research progress on extraction of lithium by roasting typical lithium-containing minerals[J]. Science in China: Chemistry, 2017, 47(11):1273-1283.

    Google Scholar

    [25] 伍习飞. 宜春锂云母提锂工艺及机理研究[D]. 长沙: 中南大学, 2012.

    Google Scholar

    WU X F. Study on the technology and mechanism of lithium extraction from Yichun lepidolite[D]. Changsha: Central South University, 2012.

    Google Scholar

    [26] 林高逵. 江西锂云母-石灰石烧结工艺的改进研究[J]. 稀有金属与硬质合金, 1999(2):3-5.

    Google Scholar

    LIN G K. Study on improvement of Jiangxi lepidolite-limestone sintering process[J]. Rare Metals and Cemented Carbides, 1999(2):3-5.

    Google Scholar

    [27] 王丁, 陈树, 刘昕昕, 等. 锂云母碱溶法提锂新工艺研究[J]. 无机盐工业, 2014, 46(9):26-28+40. doi: 10.3969/j.issn.1006-4990.2014.09.006

    CrossRef Google Scholar

    WANG D, CHEN S, LIU X X, et al. Research on the new technology of lithium extraction from lepidolite by alkaline solution[J]. Inorganic Salt Industry, 2014, 46(9):26-28+40. doi: 10.3969/j.issn.1006-4990.2014.09.006

    CrossRef Google Scholar

    [28] 苏慧, 朱兆武, 王丽娜, 齐涛. 矿石资源中锂的提取与回收研究进展[J]. 化工学报, 2019, 70(1):10-23. doi: 10.11949/j.issn.0438-1157.20180465

    CrossRef Google Scholar

    SU H, ZHU Z W, WANG L N, QI T. Research progress on the extraction and recovery of lithium from ore resources[J]. CIESC Journal, 2019, 70(1):10-23. doi: 10.11949/j.issn.0438-1157.20180465

    CrossRef Google Scholar

    [29] 陈正炎, 胡莉茵, 程步陞. t-BAMBP萃取分离铷、铯[J]. 稀有金属, 1992(5):331-337. doi: 10.13373/j.cnki.cjrm.1992.05.004

    CrossRef Google Scholar

    CHEN Z Y, HU L Y, CHENG B S. Extraction and separation of rubidium and cesium with t-BAMBP[J]. Rare Metals, 1992(5):331-337. doi: 10.13373/j.cnki.cjrm.1992.05.004

    CrossRef Google Scholar

    [30] 雷祖伟, 钟宏. 含铷、铯锂云母矿的复合盐焙烧-浸出性能及机理[J]. 矿产综合利用, 2019(3):152-158. doi: 10.3969/j.issn.1000-6532.2019.03.033

    CrossRef Google Scholar

    LEI Z W, ZHONG H. Composite salt roasting - leaching performance and mechanism of lepidolite containing rubidium and cesium[J]. Multipurpose Utilization of Mineral Resources, 2019(3):152-158. doi: 10.3969/j.issn.1000-6532.2019.03.033

    CrossRef Google Scholar

    [31] Su H, Ju J, Zhang J, et al. Lithium recovery from lepidolite roasted with potassium compounds[J]. Minerals Engineering, 2020, 145:106087. doi: 10.1016/j.mineng.2019.106087

    CrossRef Google Scholar

    [32] Yan Q, Li X, Wang Z, et al. Extraction of lithium from lepidolite by sulfation roasting and water leaching[J]. International Journal of Mineral Processing, 2012, 110-111(none):1-5.

    Google Scholar

    [33] Van Tri Luong, Dong Jun Kang, Jeon Woong An, et al. Iron sulphate roasting for extraction of lithium from lepidolite[J]. Hydrometallurgy, 2014.

    Google Scholar

    [34] 虞宝煜, 毕玉峰. 锂云母与NaCl及NaCl-CaCl2的相互作用[J]. 稀有金属, 1994(3):231-232+235.

    Google Scholar

    YU B Y, BI Y F. The interaction of lepidolite with NaCl and NaCl-CaCl2[J]. Rare Metals, 1994(3):231-232+235.

    Google Scholar

    [35] 伍习飞, 尹周澜, 李新海, 等. 氯化焙烧法处理宜春锂云母矿提取锂钾的研究[J]. 矿冶工程, 2012, 32(3):95-98. doi: 10.3969/j.issn.0253-6099.2012.03.026

    CrossRef Google Scholar

    WU X F, YIN Z L, LI X H, et al. Study on extraction of lithium and potassium from Yichun lepidolite ore by chlorination roasting method[J]. Mining and Metallurgical Engineering, 2012, 32(3):95-98. doi: 10.3969/j.issn.0253-6099.2012.03.026

    CrossRef Google Scholar

    [36] Zhang X, Aldahri T, Tan X, et al. Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting[J]. Chemical Engineering and Processing, 2019, 147:107777.

    Google Scholar

    [37] Thi, Thu, Hien-Dinh, et al. Extraction of lithium from lepidolite via iron sulphide roasting and water leaching[J]. Hydrometallurgy, 2015, 153:154-159. doi: 10.1016/j.hydromet.2015.03.002

    CrossRef Google Scholar

    [38] Samoilov V I, Onalbaeva Z S, Adylkanova M A, et al. Development of alkaline decomposition of lepidolite concentrate by melting with calcined soda and melt comprehensive sulfuric acid treatment[J]. Metallurgist, 2018, 62(3-4):361-368. doi: 10.1007/s11015-018-0669-z

    CrossRef Google Scholar

    [39] 王文祥, 黄际芬, 刘志宏. 宜春锂云母压煮溶出新工艺研究[J]. 有色金属 (冶炼部分), 2001(5):19-21.

    Google Scholar

    WANG W X, HUANG J F, LIU Z H. Research on the new technology of Yichun lepidolite pressure cooking dissolution[J]. Nonferrous Metals (Extractive Metallurgy), 2001(5):19-21.

    Google Scholar

    [40] 王丁, 陈树. 高压蒸汽法处理锂云母提锂工艺研究[J]. 无机盐工业, 2020, 52(2):47-49. doi: 10.11962/1006-4990.2019-0168

    CrossRef Google Scholar

    WANG D, CHEN S. Research on the high-pressure steam treatment of lepidolite to extract lithium[J]. Inorganic Salt Industry, 2020, 52(2):47-49. doi: 10.11962/1006-4990.2019-0168

    CrossRef Google Scholar

    [41] Jinlian Liu, L Y Zhou, X H Li, et al. A novel process for the selective precipitation of valuable metals from lepidolite[J]. Hydrometallurgy, 2019:29-36.

    Google Scholar

    [42] Guo, Hui, Yang, et al. Fundamental research on a new process to remove Al3+ as potassium alum during lithium extraction from lepidolite[J]. Metallurgical and Materials Transactions, B. Process metallurgy and materials processing science, 2016.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(3921) PDF downloads(411) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint