Citation: | Zuo Zongliang, Luo Siyi, Yu Qingbo, Zhang Jingkui. Orthogonal Experiments of Copper Slag Particles Direct Reduction by Carbon-Containing Solid Waste Reductant[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 46-50. doi: 10.3969/j.issn.1000-6532.2022.05.009 |
Copper slag particles were prepared by rotary cup atomizer. Carbon-containing copper slag pellets were prepared by copper slag particles, carbon reductant, binder and slag former. The effects of six factors on reduction ratio of carbon-containing copper slag pellets were in accordance with the sequence of reaction temperature > the ratio of slag former > atmosphere > the types of reduction reductant > particle size of copper slag > the addition ratio of reductant, under experiment conditions. The optimum condition for direct reduction of carbon-containing copper slag pellets was that the reaction temperature was 1150℃, the ratio of slag former was 1∶0.4, atmosphere was CO2(50%)+N2(50%), the reductant was coal, particle size of copper slag was +0.425 mm and the addition ratio of reductant was 1.2∶1. On this condition, the reduction ratio of copper slag is 98.2%.
[1] | 姜平国, 吴朋飞, 胡晓军, 等. 铜渣综合利用研究现状及其新技术的提出[J]. 中国矿业, 2016, 25(2):76-79. doi: 10.3969/j.issn.1004-4051.2016.02.014 JIANG P G, WU P F, HU X J, et al. Research review of comprehensive utilization of copper slag and new technology[J]. China Mining Magazine, 2016, 25(2):76-79. doi: 10.3969/j.issn.1004-4051.2016.02.014 |
[2] | 孙伟, 刘建远, 贺政, 等. 某铜渣浮选试验研究[J]. 矿产综合利用, 2019(2):112-114. doi: 10.3969/j.issn.1000-6532.2019.02.023 SUN W, LIU J Y, HE Z, et al. Study on flotation of copper slag[J]. Multipurpose Utilization of Mineral Resources, 2019(2):112-114. doi: 10.3969/j.issn.1000-6532.2019.02.023 |
[3] | YANG Z H, LIN Q, XIA J X, et al. Preparation and crystallization of glass–ceramics derived from iron-rich copper slag [J]. Journal of Alloys and Compounds, 2013, 574: 354-360. |
[4] | LIU H Y, LU H X, CHEN D L, et al. Preparation and properties of glass–ceramics derived from blast-furnace slag by a ceramic-sintering process [J]. Ceramics International. 2009, 35(8): 3181-3184. |
[5] | Rudnik E, Burzńska L, Gumowska W. Hydrometallurgical recovery of copper and cobalt from reduction-roasted copper converter slag[J]. Minerals Engineering, 2009, 22(1):88-95. doi: 10.1016/j.mineng.2008.04.016 |
[6] | 邓彤, 凌云汉. 含钴铜转炉渣的工艺矿物学[J]. 中国有色金属学报, 2001, 11(5):881-885. doi: 10.3321/j.issn:1004-0609.2001.05.029 DENG T, LING Y H. Process mineralogy of Cobalt - bearing copper converter slag[J]. Chinese Journal of Nonferrous Metals, 2001, 11(5):881-885. doi: 10.3321/j.issn:1004-0609.2001.05.029 |
[7] | Gyurov Stoyko, Rabadjieva Diana, Kovacheva Daniela, et al. Kinetics of copper slag oxidation under nonisothermal conditions[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(2):945-954. doi: 10.1007/s10973-013-3569-2 |
[8] | Siwiec G, Oleksiak B, Matula T, et al. Reduction of copper slag with the use of carbon granulates [J]. Metallurgy. 2014, 53(4): 585-587. |
[9] | 邓彤, 文震, 刘东. 硫酸介质中氯化物参与下氧化浸出铜渣过程[J]. 中国有色金属学报, 2001, 11(2):302-306. doi: 10.3321/j.issn:1004-0609.2001.02.030 DENG T, WEN Z, LIU D. Leaching of copper residue with oxygen in sulfuric acid with participation of chloride[J]. Chinese Journal of Nonferrous Metals, 2001, 11(2):302-306. doi: 10.3321/j.issn:1004-0609.2001.02.030 |
[10] | Warczok A, Riveros G. Slag cleaning in crossed electric and magnetic fields[J]. Minerals Engineering. 2007, 20(1): 34-43. |
[11] | 马泳波, 杜雪岩, Alibek Kakimov, 等. 富铁镍渣综合利用的研究与进展综述[J]. 矿产综合利用, 2018(6):25-31. doi: 10.3969/j.issn.1000-6532.2018.06.005 MA Y B, DU X Y, Alibek Kakimov, et al. Research and progress of nickel slag's comprehensive utilization[J]. Multipurpose Utilization of Mineral Resources, 2018(6):25-31. doi: 10.3969/j.issn.1000-6532.2018.06.005 |
[12] | 李伟. 云南某低品位含铁硫化铜矿综合回收试验研究[J]. 矿产综合利用, 2018(1):50-54. doi: 10.3969/j.issn.1000-6532.2018.01.011 LI W. Experimental study on comprehensive recovery for one low-grade copper sulphide ore containing iron in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2018(1):50-54. doi: 10.3969/j.issn.1000-6532.2018.01.011 |
[13] | SUN Y S, HAO Y X, GAO P, et al. Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms[J]. International Journal of Mineral Processing, 2015, 143:87-97. doi: 10.1016/j.minpro.2015.09.005 |
[14] | 李涛, 刘晨, 佘世杰. 铜渣中铁铜回收的实验研究[J]. 矿产综合利用, 2020(2):145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026 LI T, LIU C, SHE S J. Research on recovery of iron and copper in copper slag[J]. Multipurpose Utilization of Mineral Resources, 2020(2):145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026 |
[15] | 徐冬林, 谢冬冬, 张旭, 等. 基于均匀试验的赤铁矿石助磨剂复配试验研究[J]. 矿产综合利用, 2019(2):30-36. doi: 10.3969/j.issn.1000-6532.2019.02.006 XU D L, XIE D D, ZHANG X, et al. Experimental study on the mixing test of grinding aids of hematite ore based on uniform design[J]. Multipurpose Utilization of Mineral Resources, 2019(2):30-36. doi: 10.3969/j.issn.1000-6532.2019.02.006 |
XRD pattern of copper slag
Cooled copper slag particles
Effect of binder ratio on compressive strength of pellets (pulverized coal)