Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 No. 3
Article Contents

Zhang Rui, Liang Jinglong, Li Hui. Research Progress on Preparation and Modification Technology of LiFePO4[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 51-57. doi: 10.3969/j.issn.1000-6532.2022.03.010
Citation: Zhang Rui, Liang Jinglong, Li Hui. Research Progress on Preparation and Modification Technology of LiFePO4[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 51-57. doi: 10.3969/j.issn.1000-6532.2022.03.010

Research Progress on Preparation and Modification Technology of LiFePO4

More Information
  • Lithium iron phosphate batteries have excellent performance and are widely used in many fields. This article briefly introduced three commonly used preparation methods of lithium iron phosphate, high temperature solid-state method, carbothermal reduction method and hydrothermal method, and analyzed and compared their advantages and disadvantages. At the same time, it summarized some results on coating modification and doping modification research in recent years.

  • 加载中
  • [1] 田柳文, 于华, 张文峰, 等. 锂离子电池的明星材料磷酸铁锂: 基本性能、优化改性及未来展望[J]. 材料导报, 2019(21):3561-3579. doi: 10.11896/cldb.18090309

    CrossRef Google Scholar

    TIAN L W, YU H, ZHANG W F, et al. The star material of lithium ion batteries, lifepo4: basic properties, optimized modification and future prospects[J]. Materials Reports, 2019(21):3561-3579. doi: 10.11896/cldb.18090309

    CrossRef Google Scholar

    [2] 陈继勇, 卢欣欣. 磷酸铁锂电池及其新能源汽车启动电源性能分析[J]. 时代汽车, 2019(200):54-55.

    Google Scholar

    CHEN J Y, LU X X. Performance analysis on lithium iron phosphate battery as starting power for new energy automobile[J]. Auto Time, 2019(200):54-55.

    Google Scholar

    [3] 胡斌, 王良秀, 吴国栋. 船用磷酸铁锂电池动力系统短路特性研究[J]. 船舶工程, 2019(10):105-110.

    Google Scholar

    HU B, WANG L X, WU G D. Study on short current characteristics of marine lithium iron phosphate battery power system[J]. Ship Engineering, 2019(10):105-110.

    Google Scholar

    [4] 罗剑锋, 马吉富. 5G通信后备电源用磷酸铁锂电池系统的研制[J]. 通信电源技术, 2019(9):16-19.

    Google Scholar

    LUO J F, MA J F. Development of lithium iron phosphate battery system for 5G communication backup power supply[J]. Telecom Power Technology, 2019(9):16-19.

    Google Scholar

    [5] 高媛. 高性能锂离子电池正极材料磷酸铁锂的合成及改性研究[D]. 重庆: 重庆大学, 2017.

    Google Scholar

    GAO Y. Synthesis and modification of LiFePO4 as a cathode material for lithium-ion batteries [D]. Chongqing: Chongqing University, 2017.

    Google Scholar

    [6] Yuhan Sun, Qiang Zhao, Chunhui Luo, et al. A novel strategy for the synthesis of Fe3(PO4)2 using Fe-P waste slag and CO2 followed by its use as the precursor for LiFePO4 preparation[J]. ASC Omega, 2019, 4:9932-9938.

    Google Scholar

    [7] Ondrej Cech, Onderj Klvac, Petra Benesova, et al. Synthesizing a LiFePO4/graphene composite with electrochemically prepared few-layer grapheme[J]. Journal of Energy Storage, 2019, 22:373-377. doi: 10.1016/j.est.2019.02.020

    CrossRef Google Scholar

    [8] Yina Wu, Le Zhou, Guoqing Xu, et al. Preparation of hightap density LiFePO4/C through carbothermal reduction process using beta-cyclodextrin as carbon source [J]. International Journal of Electrochemical Science, 2018, 13: 2958-2968.

    Google Scholar

    [9] Longjiao Chang, Yafeng Wang, Shaohua Luo, et al. Carbothermal reduction preparation and performance of LiFePO4/C by using ammonium jarosite extracted from vanadium slag as iron source[J]. Ionics, 2019, 25(12):5725-5734. doi: 10.1007/s11581-019-03155-6

    CrossRef Google Scholar

    [10] Shoufeng Yang, PeterY Zavalij, M Stanley Whittingham. Hydrotheamal synthesis of lithium iron phosphate cathodes[J]. Electrochemistry Communications, 2001, 3:505-508. doi: 10.1016/S1388-2481(01)00200-4

    CrossRef Google Scholar

    [11] 汪勇, 陈恳, 查红英, 等. 水热法合成纳米LiFePO4材料[J]. 电源技术, 2015(4):688-690+762. doi: 10.3969/j.issn.1002-087X.2015.04.025

    CrossRef Google Scholar

    WANG Y, CHEN K, ZHA H Y, et al. Hydrothermal synthesis of LiFePO4 nano-materials[J]. Chinese Journal of Power Sources, 2015(4):688-690+762. doi: 10.3969/j.issn.1002-087X.2015.04.025

    CrossRef Google Scholar

    [12] Satish Bollojua, Rupesh Ronana, Shao-Tzu Wu, et al. A green and facile approach for hydrothermal synthesis of LiFePO4 using iron metal directly[J]. Electrochimica Acta, 2016, 220:164-168. doi: 10.1016/j.electacta.2016.10.066

    CrossRef Google Scholar

    [13] 李高峰, 李志敏, 宁涛, 等. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018(9):23-30. doi: 10.11868/j.issn.1001-4381.2017.001182

    CrossRef Google Scholar

    LI G F, LI Z M, NING T, et al. Research progress of cathode materials modified by surface coating for lithium ion batteries[J]. Journal of Materials Engineering, 2018(9):23-30. doi: 10.11868/j.issn.1001-4381.2017.001182

    CrossRef Google Scholar

    [14] 吴关. 锂离子电池正极材料LiFePO4与LiNi0.8Co0.15Al0.05O2的制备、改性及电化学性能研究[D]. 武汉: 武汉科技大学, 2018: 12.

    Google Scholar

    WU G. Synthesis, modification and electrochemical performance of LiFePO4 and LiNi0.8Co0.15Al0. 05O2 cathode materials for lithium ion batteries[D]. WuHan: Wuhan University of Science and Technology, 2018: 12.

    Google Scholar

    [15] Xufeng Wang, Zhijun Feng, Juntong Huang, et al. Graphene-decorated carbon-coated LiFePO4 nanospheres as a highperformance cathode material for lithium-ion batteries[J]. Carbon, 2018, 127:149-157. doi: 10.1016/j.carbon.2017.10.101

    CrossRef Google Scholar

    [16] Zheng Zhan, Mingming Wang, Junfeng Xu, et al. Modification of lithium iron phosphate bycarbon coating[J]. International Journal of Electrochemical Science, 2019, 14:10622-10632.

    Google Scholar

    [17] Juan Wang, Yi-Jie Gu, Wen-Li Kong, et al. Effect of carbon coating on the crystal orientation and electrochemical performance of nanocrystalline LiFePO4[J]. Solid State Ionics, 2018, 327:11-17. doi: 10.1016/j.ssi.2018.10.015

    CrossRef Google Scholar

    [18] JunkeOu, Lin Yang, Feng Jin, et al. High performance of LiFePO4 with nitrogen-doped carbon layers for lithium ion batteries[J]. Advanced Powder Technology, 2020.

    Google Scholar

    [19] Xufeng Wang, Zhijun Feng, Xiaolong Hou, et al. Fluorine doped carbon coating of LiFePO4 as a cathode material for lithiumion batteries[J]. Chemical Engineering Journal, 2020.

    Google Scholar

    [20] T D Dong, X Wang, K C Zhu. High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries[J]. Applied Surface Science, 2016, 390:481-488. doi: 10.1016/j.apsusc.2016.08.066

    CrossRef Google Scholar

    [21] Yanshuang Meng, Yuzhu Li, Jun Xia, et al. F-doped LiFePO4@N/B/F-doped carbon as high performance cathode materials for Li-ion batteries[J]. Applied Surface Science, 2019, 476:761-768. doi: 10.1016/j.apsusc.2019.01.139

    CrossRef Google Scholar

    [22] Yuan Gao, Kun Xiong, Hui Xu, et al. Enhanced high-rate and low-temperature electrochemical properties of LiFePO4/ polypyrrole cathode materials for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2019, 14:3408-3417.

    Google Scholar

    [23] Wélique Silva Fagundes, Farlon Felipe Silva Xavier, LaianeKalita Santana, et al. PAni-coated LiFePO4 synthesized by a low temperature solvothermal method [J]. Materials Research, 2019, 22(1).

    Google Scholar

    [24] Wenyuan Duan, Mingshu Zhao, Yusuke Mizuta, et al. Superior electrochemical performance of a novel composite LiFePO4/C/CNTs for the aqueous rechargeable lithium-ion battery[J]. Physical Chemistry Chemical Physics, 2020.

    Google Scholar

    [25] Zhaoyong Chen, Zeng Zhang, Qunfang Zhao, et al. Understanding the impact of K-doping on the structure and performance of LiFePO4/C cathode materials[J]. Journal of Nanoscience and Nanotechnology, 2019, 19:119-124. doi: 10.1166/jnn.2019.16449

    CrossRef Google Scholar

    [26] Ian D. Johnson, Ekaterina Blagovidova, Paul A Dingwall, et al. High power Nb-doped LiFePO4 Li-ion battery cathodes; pilot-scale synthesis and electrochemical properties[J]. Journal of Power Sources, 2016, 326:476-481. doi: 10.1016/j.jpowsour.2016.06.128

    CrossRef Google Scholar

    [27] Shanshan Jiang, Yuansheng Wang. Synthesis and characterization of vanadium-doped LiFePO4@C electrode with excellent rate capability for lithium-ion batteries[J]. Solid State Ionics, 2019, 335:97-102. doi: 10.1016/j.ssi.2019.03.002

    CrossRef Google Scholar

    [28] Huan Liu, Shao-hua Luo, Sheng-xue Yan, et al. A novel and low-cost iron source for synthesizing Cl-doped LiFePO4/C cathode materials for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2019:850.

    Google Scholar

    [29] Baofeng Zhang, Youlong Xu, Jie Wang, et al. Lanthanum and cerium Co-doped LiFePO4: morphology, electrochemical performance and kinetic study from -30℃-+50℃[J]. Electrochimica Acta, 2019:322.

    Google Scholar

    [30] Yi-juLv, Bin Huang, Jia-xu Tan, et al. Enhanced low temperature electrochemical performances of LiFePO4/C by V3+ and F- co-doping[J]. Materials Letters, 2018, 229:349-352. doi: 10.1016/j.matlet.2018.07.049

    CrossRef Google Scholar

    [31] Xuetian Li, Lina Yu, Yonghui Cui, et al. Enhanced properties of LiFePO4/C cathode materials co-doped with V and F ions via high temperature ball milling route[J]. International Journal of Hydrogen Energy, 2019, 44(50):27204-27213. doi: 10.1016/j.ijhydene.2019.08.187

    CrossRef Google Scholar

    [32] Libin Gao, Zhengrui Xu, Shu Zhang. The co-doping effects of Zr and Co on structure and electrochemical properties of LiFePO4 cathode materials[J]. Journal of Alloys and Compounds, 2018, 739:529-535. doi: 10.1016/j.jallcom.2017.12.313

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2008) PDF downloads(574) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint