Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 No. 1
Article Contents

Huang Yupeng, Zou Jinxi, Liu Qingqiang, Wu Chunzhang, Liu Xianfan, Deng Jianghong, Ren Kefa. Petrographical and Mineralogical Characteristics of Bengge Alkaline Igneous Complex in Zhongdian, Western Yunnan and Its Geological Significance[J]. Multipurpose Utilization of Mineral Resources, 2022, (1): 89-103. doi: 10.3969/j.issn.1000-6532.2022.01.012
Citation: Huang Yupeng, Zou Jinxi, Liu Qingqiang, Wu Chunzhang, Liu Xianfan, Deng Jianghong, Ren Kefa. Petrographical and Mineralogical Characteristics of Bengge Alkaline Igneous Complex in Zhongdian, Western Yunnan and Its Geological Significance[J]. Multipurpose Utilization of Mineral Resources, 2022, (1): 89-103. doi: 10.3969/j.issn.1000-6532.2022.01.012

Petrographical and Mineralogical Characteristics of Bengge Alkaline Igneous Complex in Zhongdian, Western Yunnan and Its Geological Significance

  • Bengge alkaline igneous complex in Zhongdian, Western Yunnan has the variety of rock types, which is production after a complex magma—fluid process. The petrographical and mineralogical analysis of the host rock and its xenolith suggests that the igneous complex has magma mixing and contamination, and metasomatism features. The light-colored minerals in different rock types of Bengge pluton are orthoclase, and individual sample which represent s magma mixing and metasomatism residual has the plagioclase. The dark minerals show the characters of rich-Si, Mg, and poor-Al, alkali. The magmatic source of different rock types is different. The production of syenite was related to Ganze-Litang oceanic flat subduction in late Triassic, and its origin was crust-mantle mixing source. While the lamprophyre was the production that the mantle source of potassic-ultrapotassic magmatism was caused by India-Eurasia plate collision in Cenozoic. The two magmas with different properties coexisted in the same closed system, and magma mixing, contamination, metasomatism had occurred in the magma transfer and petrogenetic process. Therefore, the petrogenesis of Bengge alkaline igneous complex subjects to the multi-stages overlying process of magma-fluid-tectonism which is mainly oceanic crust subduction.

  • 加载中
  • [1] 曹殿华, 王安建, 修群业, 等. 中甸地区甭哥正长岩地球化学特征及其地质意义[J]. 地质学报, 2007, 81(7):995-1003.

    Google Scholar

    CAO D H, WANG A J, XIU Q Y, et al. Geochemical characteristics and geological significance of the Noge syenite in Zhongdian area[J]. Chinese Journal of Geology, 2007, 81(7):995-1003.

    Google Scholar

    [2] 杨岳清, 侯增谦, 黄典豪, 等. 中甸弧碰撞造山作用和岩浆成矿系统[J]. 地球学报, 2002, 23(1):17-24. doi: 10.3321/j.issn:1006-3021.2002.01.004

    CrossRef Google Scholar

    YANG Y Q, HOU Z Q, HUANG D H, et al. Zhongdian arc collision orogeny and magmatic metallogenic system[J]. Chinese Journal of Geosciences, 2002, 23(1):17-24. doi: 10.3321/j.issn:1006-3021.2002.01.004

    CrossRef Google Scholar

    [3] 曾普胜, 杨伟光, 喻学惠. 滇西富碱斑岩带及其与金矿化的关系[J]. 地球学报, 1999, 20(S1):367-372.

    Google Scholar

    ZENG P S, YANG W G, YU X H, et al. The alkali-rich porphyry belt in western Yunnan and its relationship with gold mineralization[J]. Chinese Journal of Geosciences, 1999, 20(S1):367-372.

    Google Scholar

    [4] 葛良胜, 邹依林, 邢俊兵, 等. 滇西北与喜马拉雅期富碱斑岩有关的金矿成矿系统[J]. 黄金地质, 2004, 10(1):39-47.

    Google Scholar

    GE L S, ZOU Y L, XING J B, et al. Gold metallogenic system related to Himalayan alkali-rich porphyry in northwestern Yunnan[J]. Gold Geology, 2004, 10(1):39-47.

    Google Scholar

    [5] 武玉海, 葛良胜, 邢俊兵, 等. 滇西北与新生代富碱斑岩体(脉)有关的金矿床区域成矿模式[J]. 地质找矿论丛, 2004, 19(3):159-167.

    Google Scholar

    WU Y H, GE L S, XING J B, et al. The regional metallogenic model of gold deposits related to cenozoic alkali-rich porphyry bodies (veins) in northwestern Yunnan[J]. Journal of Geological Prospecting, 2004, 19(3):159-167.

    Google Scholar

    [6] 黄玉蓬, 刘显凡, 邓江红, 等. 滇西北甭哥岩体成岩与成矿地质地球化学特征分析[J]. 矿物学报, 2011, 31(S):349-350.

    Google Scholar

    HUANG Y P, LIU X F, DENG J H, et al. Analysis of the diagenesis and metallogenic geological and geochemical characteristics of the Bengge pluton in Northwestern Yunnan[J]. Acta Mineralogy, 2011, 31(S):349-350.

    Google Scholar

    [7] 路远发. GeoKit: 一个用 VBA构建的地球化学工具软件包[J]. 地球化学, 2004(5):.459-464.

    Google Scholar

    LU Y F. GeoKit: a package of geochemical tools constructed with VBA[J]. Geochemistry, 2004(5):.459-464.

    Google Scholar

    [8] 谢应雯, 梁华英, 张玉泉. 藏东及邻区钾玄岩系岩石云母特征及其岩石学意义[J]. 岩石学报, 2002, 18(2):205-211.

    Google Scholar

    XIE Y W, LIANG H Y, ZHANG Y Q. Mica characteristics and petrological significance of shoshonite rocks in eastern Xizang and adjacent areas[J]. Chinese Journal of Petrology, 2002, 18(2):205-211.

    Google Scholar

    [9] 程启芬, 毛建仁, 苏郁香, 等. 长江中下游中酸性侵入岩中的黑云母及其地质意义[J]. 中国科学院南京地质科学院地质矿产研究所所刊, 1987, 8(3):56-70.

    Google Scholar

    CHENG Q F, MAO J R, SU Y X, et al. Biotite in medium-acid intrusive rocks in the middle and lower reaches of the Yangtze River and its geological significance[J]. Journal of Institute of Geology and Mineral Resources, Nanjing Academy of Geological Sciences, Chinese Academy of Sciences, 1987, 8(3):56-70.

    Google Scholar

    [10] 林培英. 光性矿物学试验教程[M]. 北京: 武汉地质学院北京研究生院内部教材, 1986: 1-100.

    Google Scholar

    LIN P Y. Optical mineralogy experiment course [M]. Beijing: Internal Textbook of Beijing Graduate School of Wuhan Institute of Geology, 1986: 1-100.

    Google Scholar

    [11] 莫宣学 主编. 青藏高原新生代碰撞——后碰撞火成岩[M[. 北京: 地质出版社, 2009, 231-238.

    Google Scholar

    MO X X Editor-in-chief. Cenozoic collision of the Qinghai-Xizang Plateau—post-collision igneous rocks [M[. Beijing: Geological Press, 2009, 231-238.

    Google Scholar

    [12] Leake B E, Woolley A R and Youzhi G, et al. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names[J]. Mineralogical Magazine, 1997, 61:295-321. doi: 10.1180/minmag.1997.061.405.13

    CrossRef Google Scholar

    [13] Leake B E. Nomenclature amphiboles[J]. Mineralogical Magazine, 1978, 42:533-563. doi: 10.1180/minmag.1978.042.324.21

    CrossRef Google Scholar

    [14] Compton J S, Oberti R and Ghose S. Crystal-chemistry of a complex Mn-bearing alkali amphiboles (“tirodite”) on the verge of exsolution[J]. European Journal of Mineralogy, 1993, 5(6):1153-1160. doi: 10.1127/ejm/5/6/1153

    CrossRef Google Scholar

    [15] Filippo Ridolfi, Alberto Renzulli, Matteo Puerini. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes[J]. Contributions to mineralogy and petrology, 2010, 160(1):45-66. doi: 10.1007/s00410-009-0465-7

    CrossRef Google Scholar

    [16] Morimoto N. Nomenclature of pyroxenes[J]. Mineralogical Magazine, 1988, 52:431-435.

    Google Scholar

    [17] Putirka K. Thermometers and barometers for volcanic systems[J]. Minerals, Inclusions and Volcanic Processes, Reviews in Mineralogy and Geochemistry, Mineralogical Soc. Am., 2008, 69:61-120.

    Google Scholar

    [18] Barton M, Bergen M J. Green clinopyroxenes and associated phases in a potassium-rich lava from the Leucite Hills, Wioming[J]. Contributions to mineralogy and petrology, 1981, 77:101-114. doi: 10.1007/BF00636514

    CrossRef Google Scholar

    [19] 王奎仁. 地球与宇宙成因矿物学[M]. 合肥: 安徽教育出版社, 1989, 1-544.

    Google Scholar

    WANG K R. Mineralogy of the earth and the origin of the universe [M]. Hefei: Anhui Education Press, 1989, 1-544.

    Google Scholar

    [20] 姜丽莉. 云南甭哥金矿矿床地质特征及含矿岩体成岩研究[D]. 北京: 中国地质大学, 2013: 1-60.

    Google Scholar

    JIANG L L. Geological characteristics of the Bengge gold deposit in Yunnan and research on the diagenesis of the ore-bearing rock mass [D]. Beijing: China University of Geosciences, 2013: 1-60.

    Google Scholar

    [21] 刘晓. 云南中甸地区甭哥金矿正长岩研究及其与成矿作用关系[D]. 北京: 中国地质大学, 2014: 1-49.

    Google Scholar

    LIU X. Research on syenite in the Bengge gold deposit in Zhongdian, Yunnan and its relationship with mineralization [D]. Beijing: China University of Geosciences, 2014: 1-49.

    Google Scholar

    [22] 杜乐天. 幔汁(HACONS流体)地球内动因探索[J]. 地球学报, 2009, 30(6):739-748. doi: 10.3321/j.issn:1006-3021.2009.06.006

    CrossRef Google Scholar

    DU L T. Exploration of intra-earth drivers of mantle juice (HACONS Fluid)[J]. Chinese Journal of Earth Sciences, 2009, 30(6):739-748. doi: 10.3321/j.issn:1006-3021.2009.06.006

    CrossRef Google Scholar

    [23] 李春辉. 藏东南(中甸)区域隆升动力模型: 地球化学和热年代学[D]. 成都: 成都理工大学, 2012: 1-53.

    Google Scholar

    LI C H. Dynamic model of uplift in Southeast Xizang (Zhongdian): geochemistry and thermochronology [D]. Chengdu: Chengdu University of Technology, 2012: 1-53.

    Google Scholar

    [24] A J Reid, C J L Wilson, Shun Liu, et al. Mesozoic plutons of the Yidun Arc, SW China: U-Pb geochronology and Hf isotopic signature[J]. Ore Geology Reviews, 2007, 31:88-106. doi: 10.1016/j.oregeorev.2004.11.003

    CrossRef Google Scholar

    [25] 任涛, 钟宏, 陈金法, 等. 云南中甸地区浪都高钾中酸性侵入岩的地球化学特征[J]. 矿物学报, 2011, 31(1):43-54.

    Google Scholar

    REN T, ZHONG H, CHEN J F, et al. Geochemical characteristics of high-potassium medium-acid intrusive rocks in Langdu, Zhongdian, Yunnan[J]. Mineralogy, 2011, 31(1):43-54.

    Google Scholar

    [26] 李献华, 周汉文, 韦刚健, 等. 滇西新生代超钾质煌斑岩的元素和Sr-Nd同位素特征及其对岩石圈地幔组成的制约[J]. 地球化学, 2002, 31(1):9-13.

    Google Scholar

    LI X H, ZHOU H W, WEI G J, et al. Elemental and Sr-Nd isotopic characteristics of cenozoic ultrapotassic lamprophyre in Western Yunnan and its constraints on the composition of the lithospheric mantle[J]. Geochemistry, 2002, 31(1):9-13.

    Google Scholar

    [27] 杜乐天. 碱交代作用地球化学原理[J]. 中国科学B辑, 1986(1):81-90.

    Google Scholar

    DU L T. The Geochemical principle of alkaline metasomatism[J]. Science of China Series B, 1986(1):81-90.

    Google Scholar

    [28] 李文昌, 卢映祥, 尹光候, 等. 西南三江南段找矿重大疑难问题研究报告[R]. 昆明: 云南省地质调查院, 2006.

    Google Scholar

    LI W C, LU Y X, YIN G H, et al. Research report on major difficult problems in prospecting in the south section of three rivers in Southwest China [R]. Kunming: Yunnan Geological Survey Institute, 2006.

    Google Scholar

    [29] 於崇文. 矿床在混沌边缘分形生长(上)[M]. 合肥: 安徽教育出版社, 2006: 1-789.

    Google Scholar

    YU C W. Fractal growth of ore deposits on the edge of chaos (Part 1) [M]. Hefei: Anhui Education Press, 2006: 1-789.

    Google Scholar

    [30] 罗照华, 卢欣祥, 郭少丰, 等. 透岩浆流体成矿体系[J]. 岩石学报, 2008, 24(12):2669-2678.

    Google Scholar

    LUO Z H, LU X X, GUO S F, et al. Transmagmatic fluid metallogenic system[J]. Chinese Journal of Petrology, 2008, 24(12):2669-2678.

    Google Scholar

    [31] 刘显凡, 蔡永文, 卢秋霞, 等. 滇西地区富碱斑岩中地幔流体作用踪迹及其成矿作用意义[J]. 地学前缘, 2010, 17(1):114-135.

    Google Scholar

    LIU X F, CAI Y W, LU Q X, et al. The traces of mantle fluids in alkali-rich porphyries in Western Yunnan and their significance for mineralization[J]. Frontiers of Geosciences, 2010, 17(1):114-135.

    Google Scholar

    [32] 和文言. 滇西北衙超大型金多金属矿床岩浆作用与成矿模式[D]. 北京: 中国地质大学(北京), 2014: 1-142.

    Google Scholar

    HE W Y. Magmatism and metallogenic model of the Ya ultra-large gold polymetallic deposit in northwestern Yunnan [D]. Beijing: China University of Geosciences (Beijing), 2014: 1-142.

    Google Scholar

    [33] 田广, 张长青, 彭惠娟, 等. 哀牢山长安金矿成因机制及动力学背景初探: 来自LA-ICP-MS锆石U-Pb定年和黄铁矿原位微量元素测定的证据[J]. 岩石学报, 2014, 30(1):125-138.

    Google Scholar

    TIAN G, ZHANG C Q, PENG H J, et al. A preliminary study on the genetic mechanism and dynamic background of the Chang'an gold deposit in Ailaoshan: Evidence from LA-ICP-MS zircon U-Pb dating and in-situ trace element determination of pyrite[J]. Chinese Journal of Petrology, 2014, 30(1):125-138.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views(2093) PDF downloads(349) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint