2014 Vol. 34, No. 3
Article Contents

QIN Bingbin, LI Tiegang, CHANG Fengming, XIONG Zhifang, HAO Peng. SHELL WEIGHT CHANGES OF PLANKTONIC FORAMINIFERA G. sacculifer FROM THE TROPICAL WESTERN PACIFIC DURING THE LAST 250 ka AND CONTROLLING MECHANISMS[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 85-92. doi: 10.3724/SP.J.1140.2014.03085
Citation: QIN Bingbin, LI Tiegang, CHANG Fengming, XIONG Zhifang, HAO Peng. SHELL WEIGHT CHANGES OF PLANKTONIC FORAMINIFERA G. sacculifer FROM THE TROPICAL WESTERN PACIFIC DURING THE LAST 250 ka AND CONTROLLING MECHANISMS[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 85-92. doi: 10.3724/SP.J.1140.2014.03085

SHELL WEIGHT CHANGES OF PLANKTONIC FORAMINIFERA G. sacculifer FROM THE TROPICAL WESTERN PACIFIC DURING THE LAST 250 ka AND CONTROLLING MECHANISMS

More Information
  • As a new proxy to reconstruct sea water[CO32-] in the past, shell weight of planktonic foraminifera can provide clues to revealing ocean carbon cycle. Shell weights of G. sacculifer measured from a tropical western Pacific sediment core WP7 during the last 250 ka show higher values in glacial periods and lower values in interglacial periods responding to changes in CO2 concentrations in the Antarctic Ice Core of Vostok, except in MIS1 and MIS4. Hence, shell weight variations in this sea area are mainly controlled by the CO2 concentration in atmosphere. As a result of intensified upwelling and carbonate dissolution, shell weights have reduced during MIS4. Shell weights also can be affected by coexisting symbionts, but not the changes in temperature and surface nutrient levels. Shell weights of G. sacculifer exhibit a generally inverse relationship with CO2 concentrations, and thus they can be used as a reliable proxy to trace variations in[CO32-] of surface water.
  • 加载中
  • [1] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399:429-436.

    Google Scholar

    [2] Boyle E A. Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles[J]. Nature, 1988, 331:55-56.

    Google Scholar

    [3] Sanyal A, Hemming N, Hanson G N, et al. Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera[J]. Nature, 1995, 373:234-236.

    Google Scholar

    [4] Archer D, Winguth A, Lea D, et al. What caused the glacial/interglacial atmospheric pCO2 cycles?[J] Reviews of Geophysics, 2000, 38:159-190.

    Google Scholar

    [5] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407:859-869.

    Google Scholar

    [6] Hönisch B, Hemming N G. Surface ocean pH response to variations in pCO2 through two full glacial cycles[J]. Earth and Planetary Science Letters, 2005, 236:305-314.

    Google Scholar

    [7] Barker S, Elderfield H. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2[J]. Science, 2002, 297:833-836.

    Google Scholar

    [8] Lohmann G P. A Model for variation in the chemistry of planktonic-foraminifera due to secondary calcification and selective dissolution[J]. Paleoceanography, 1995, 10:445-457.

    Google Scholar

    [9] Spero H J, Bijma J, Lea D W, et al. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes[J]. Nature, 1997, 390:497-500.

    Google Scholar

    [10] Bijma J, Spero H J, Lea D W. Reassessing Foraminiferal Stable Isotope Geochemistry:Impact of the Oceanic Carbonate Systems (Experimental Results)[C]//Use of Proxies in Paleoceanography:Examples from the South Atlantic. New York:Springer-Verlag, 1999:489-512.

    Google Scholar

    [11] Bijma J, Honisch B, Zeebe R E. Impact of the ocean carbonate chemistry on living foraminiferal shell weight:Comment on "Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea" by W. S. Broecker and E. Clark[J]. Geochemistry Geophysics Geosystems, 2002, 3(11):1064.

    Google Scholar

    [12] Russell A D, Hönisch B, Spero H J, et al. Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera[J]. Geochimica et Cosmochimica Acta, 2004, 68:4347-4361.

    Google Scholar

    [13] Moy A D, Howard W R, Bray S G, et al. Reduced calcification in modern Southern Ocean planktonic foraminifera[J]. Nature Geoscience, 2009, 2:276-280.

    Google Scholar

    [14] Naik S S, Naidu P D, Govil P, et al. Relationship between weights of planktonic foraminifer shell and surface water CO32- concentration during the Holocene and Last Glacial Period[J]. Marine Geology, 2010, 275:278-282.

    Google Scholar

    [15] Broecker W S, Clark E. An evaluation of Lohmann's foraminifera weight dissolution index[J]. Paleoceanography, 2001, 16:531-534.

    Google Scholar

    [16] Berger W H. Biogenous deep-sea Sediments:fractionation by deep-sea circulation[J]. Geological Society of America Bulletin, 1970, 18:1385-1402.

    Google Scholar

    [17] Peterson L C, Prell W L. Carbonate dissolution in recent sediments of the eastern equatorial Indian Ocean:Preservation patterns and carbonate loss above the lysocline[J]. Marine Geology, 1985, 64:259-290.

    Google Scholar

    [18] Broecker W S, Clark E. CaCO3 size distribution:A paleocarbonate ion proxy[J]. Paleoceanography, 1999, 14:596-604.

    Google Scholar

    [19] Broecker W S, Clark E. Reevaluation of the CaCO3 size index paleocarbonate ion proxy[J]. Paleoceanography, 2001, 16:669-671.

    Google Scholar

    [20] Hemming N, Hanson G. Boron isotopic composition and concentration in modern marine carbonates[J]. Geochimica et Cosmochimica Acta, 1992, 56:537-543.

    Google Scholar

    [21] Li T, Zhao J, Nan Q, et al. Palaeoproductivity evolution in the centre of the western Pacific warm pool during the last 250 ka[J]. Journal of Quaternary Science, 2011, 26:478-484.

    Google Scholar

    [22] Janecek T R. Date report:High-resolution Carbonate and Bulk Grain-size Data for Sites 803~806(0~2Ma)[C]//In:Berger W H, Kroenke L W, Mayer L A et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results 130, 1993:761-773.

    Google Scholar

    [23] Wu G, Yasuda M, Berger W. Late Pleistocene carbonate stratigraphy on Ontong-Java Plateau in the western equatorial Pacific[J]. Marine Geology, 1991, 99:135-150.

    Google Scholar

    [24] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305:367-371.

    Google Scholar

    [25] Zeebe R E, Zachos J C, Caldeira K, et al. Oceans-Carbon emissions and acidification[J]. Science, 2008, 321:51-52.

    Google Scholar

    [26] Caldeira K, Wickett M E. Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425:365-365.

    Google Scholar

    [27] Broecker W S, Clark E. Glacial-to-Holocene redistribution of carbonate ion in the deep sea[J]. Science, 2001, 294:2152-2155.

    Google Scholar

    [28] Gazeau F, Gattuso J P, Dawber C, et al. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis[J]. Biogeosciences, 2010, 7:2051-2060.

    Google Scholar

    [29] Langdon C, Atkinson M. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment[J]. Journal of Geophysical Research, 2005, 110:C09S07.

    Google Scholar

    [30] Riebesell U. Effects of CO2 enrichment on marine phytoplankton[J]. Journal of Oceanography, 2004, 60:719-729.

    Google Scholar

    [31] Riebesell U, Bellerby R, Grossart H P, et al. Mesocosm CO2 perturbation studies:from organism to community level[J]. Biogeosciences, 2008, 5:1157-1164.

    Google Scholar

    [32] Schiebel R. Planktic foraminiferal sedimentation and the marine calcite budget[J]. Global Biogeochemical Cycles, 2002, 16:1065.

    Google Scholar

    [33] Milliman J D. Production and accumulation of calcium-carbonate in the ocean:budget of a Nonsteady state[J]. Global Biogeochemical Cycles, 1993, 7:927-957.

    Google Scholar

    [34] Zeebe R E, Sanyal A. Comparison of two potential strategies of planktonic foraminifera for house building:Mg2+ or H+ removal[J]. Geochimica Et Cosmochimica Acta, 2002, 66:1159-1169.

    Google Scholar

    [35] Erez J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies[J]. Biomineralization, 2003, 54:115-149.

    Google Scholar

    [36] Kuroyanagi A, Kawahata H, Suzuki A, et al. Impacts of ocean acidification on large benthic foraminifers:Results from laboratory experiments[J]. Marine Micropaleontology, 2009, 73:190-195.

    Google Scholar

    [37] Lombard F, da Rocha R E, Bijma J, et al. Effect of carbonate ion concentration and irradiance on calcification in planktonic foraminifera[J]. Biogeosciences, 2010, 7:247-255.

    Google Scholar

    [38] Vollmer F, Arnold S. Whispering-gallery-mode biosensing:label-free detection down to single molecules[J]. Nature methods, 2008, 5:591-596.

    Google Scholar

    [39] Ridgwell A, Zeebe R E. The role of the global carbonate cycle in the regulation and evolution of the Earth system[J]. Earth and Planetary Science Letters, 2005, 234:299-315.

    Google Scholar

    [40] Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2009, 56:554-577.

    Google Scholar

    [41] Tudhope A W, Chilcott C P, McCulloch M T, et al. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle[J]. Science, 2001, 291:1511-1517.

    Google Scholar

    [42] Palmer M, Pearson P N. A 23000-year record of surface water pH and pCO2 in the Western Equatorial Pacific Ocean[J]. Science, 2003, 300:480-482.

    Google Scholar

    [43] Lea D W, Pak D K, Spero H J. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000, 289:1719-1724.

    Google Scholar

    [44] Turk D, McPhaden M J, Busalacchi A J, et al. Remotely sensed biological production in the equatorial Pacific[J]. Science, 2001, 293:471-474.

    Google Scholar

    [45] Lewis M R, Harrison W G, Oakey N S, et al. Vertical nitrate fluxes in the oligotrophic ocean[J]. Science, 1986, 234:870-873.

    Google Scholar

    [46] de Villiers S. Foraminiferal shell-weight evidence for sedimentary calcite dissolution above the lysocline[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 2005, 52:671-680.

    Google Scholar

    [47] Archer D, Emerson S, Reimers C. Dissolution of calcite in deep-sea Sediments:ph and O2 microelectrode results[J]. Geochimica et Cosmochimica Acta, 1989, 53:2831-2845.

    Google Scholar

    [48] Emerson S, Bender M. Carbon fluxes at the sediment-water interface of the deep-sea:calcium carbonate preservation[J]. Journal of Marine Research, 1981, 39:139-162.

    Google Scholar

    [49] Le J, Shackleton N J. Carbonate dissolution fluctuations in the western equatorial Pacific during the late Quaternary[J]. Paleoceanography, 1992, 7:21-42.

    Google Scholar

    [50] Gonzalez-Mora B, Sierro F J, Flores J A. Controls of shell calcification in planktonic foraminifers[J]. Quaternary Science Reviews, 2008, 27:956-961.

    Google Scholar

    [51] Beer C J, Schiebel R, Wilson P A. Testing planktic foraminiferal shell weight as a surface water[CO32-] proxy using plankton net samples[J]. Geology, 2010, 38:103-106.

    Google Scholar

    [52] Spero H J, Lerche I, Williams D F. Opening the carbon isotope "vital effect" black box, 2, Quantitative model for interpreting foraminiferal carbon isotope data[J]. Paleoceanography, 1991, 6:639-655.

    Google Scholar

    [53] Lombard F, Labeyrie L, Michel E, et al. Modelling the temperature dependent growth rates of planktic foraminifera[J]. Marine Micropaleontology, 2009, 70:1-7.

    Google Scholar

    [54] de Villiers S. Optimum growth conditions as opposed to calcite saturation as a control on the calcification rate and shell-weight of marine foraminifera[J]. Marine Biology, 2004, 144:45-49.

    Google Scholar

    [55] Aldridge D, Beer C J, Purdie D A. Calcification in the planktonic foraminifera Globigerina bulloides linked to phosphate concentrations in surface waters of the North Atlantic Ocean[J]. Biogeosciences, 2012, 9:1725-1739.

    Google Scholar

    [56] Rink S, Kühl M, Bijma J, et al. Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa[J]. Marine Biology, 1998, 131:583-595.

    Google Scholar

    [57] ter Kuile B. Mechanisms for Calcification and Carbon Cycling in Algal Symbiont-bearing Foraminifera[C]//In:Biology of Foraminifera, edited by Lee J L, Anderson O R. Academic Press, 1991:74-89.

    Google Scholar

    [58] Fujita K, Hikami M, Suzuki A, et al. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers[J]. Biogeosciences, 2011, 8:2089-2098.

    Google Scholar

    [59] Ortiz J D, Mix A C, Collier R W. Environmental control of living symbiotic and asymbiotic foraminifera of the California Current[J]. Paleoceanography, 1995, 10:987-1009.

    Google Scholar

    [60] Bijma J, Hemleben C, Oberhaensli H, et al. The effects of increased water fertility on tropical spinose planktonic foraminifers in laboratory cultures[J]. Journal of Foraminiferal Research, 1992, 22:242-256.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(920) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint