2013 Vol. 33, No. 3
Article Contents

CAO Yali, ZHAO Zongshan, ZHAO Meixun. THE APPLICATION PROGRESS OF LADDERANE LIPIDS AS BIOMARKERS ON THE STUDY OF MARINE ANAEROBIC AMMONIUM OXIDATION[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 159-169. doi: 10.3724/SP.J.1140.2013.03159
Citation: CAO Yali, ZHAO Zongshan, ZHAO Meixun. THE APPLICATION PROGRESS OF LADDERANE LIPIDS AS BIOMARKERS ON THE STUDY OF MARINE ANAEROBIC AMMONIUM OXIDATION[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 159-169. doi: 10.3724/SP.J.1140.2013.03159

THE APPLICATION PROGRESS OF LADDERANE LIPIDS AS BIOMARKERS ON THE STUDY OF MARINE ANAEROBIC AMMONIUM OXIDATION

More Information
  • Anaerobic ammonium oxidation (anammox), is the anaerobic oxidation of ammonium with nitrite as the electron acceptor, resulted ing in the release of N2. It plays an important role in the marine nitrogen cycle, and the processes taking e place in the anammoxosome, a membrane-bound intracytoplasmic compartment of anammox bacteria. Ladderane lipids, specific membrane lipids and biomarkers unique to anammox bacteria, have so far been successfully applied for to the study of marine anammox/nitrogen cycle. In this paper, the discovery of anammox, the classification of anammox bacteria and the structure as well as properties of ladderane lipids were briefly introduced; the factors on the contents and distributions of these lipids, such as dissolved oxygen, nutrient, temperature and water depth were summarized; some reports on the application of ladderane lipids were also given. Though there were few studies on the reconstruction of ancient marine anammox/nitrogen circle using ladderane lipids as biomarkers, these lipids still showed great potential in these respects.
  • 加载中
  • [1] Gruber N. The Ocean Carbon Cycle and Climate[M]. Dordrecht, Netherlands:Kluwer Academic Publishers, 2004:97-148.

    Google Scholar

    [2] Postgate J R. Biological nitrogen fixation[J]. Nature, 1970, 226(5240):25-27.

    Google Scholar

    [3] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea:How can it occur?[J]. Biogeochemistry, 1991, 13(2):87-115.

    Google Scholar

    [4] Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J]. Applied and Environmental Microbiology, 2002, 68(3):1312-1318.

    Google Scholar

    [5] Francis C A, Beman J M, Kuypers M M M. New processes and players in the nitrogen cycle:the microbial ecology of anaerobic and archaeal ammonia oxidation[J]. ISME J, 2007, 1(1):19-27.

    Google Scholar

    [6] Hamm R E, Thompson T G. Dissolved nitrogen in the sea water of the Northeast Pacific with notes on the total carbon dioxide and the dissolved oxygen[J]. Journal of Marine Research, 1941, 4(2915):11-27.

    Google Scholar

    [7] Richards F A. Chemical Oceanography[M]. London:Academic Press, 1965:611-645.

    Google Scholar

    [8] Broda E. Two kinds of lithotrophs missing in nature[J]. Zeitschrift für allgemeine Mikrobiologie, 1977, 17(6):491-493.

    Google Scholar

    [9] Mulder A, van de Graaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3):177-184.

    Google Scholar

    [10] van de Graaf A, Mulder A, de Bruijn P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology, 1995, 61(4):1246-1251.

    Google Scholar

    [11] Dalsgaard T, Canfield D E, Petersen J, et al. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica[J]. Nature, 2003, 422(6932):606-608.

    Google Scholar

    [12] Kuypers M M M, Sliekers A O, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature, 2003, 422(6932):608-611.

    Google Scholar

    [13] Kuypers M M M, Lavik G, Woebken D, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation[C]//Proceedings of the National Academy of Sciences of the United States of America. 2005, 102(18):6478-6483.

    Google Scholar

    [14] Hamersley M R, Lavik G, Woebken D, et al. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone[J]. Limnology and Oceanography, 2007, 52(3):923-933.

    Google Scholar

    [15] Trimmer M, Nicholls J C, Deflandre B. Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom[J]. Applied and Environmental Microbiology, 2003, 69(11):6447-6454.

    Google Scholar

    [16] Rysgaard S, Glud R N. Anaerobic N2 production in Arctic sea ice[J]. Limnology and Oceanography, 2004, 49(1):86-94.

    Google Scholar

    [17] Engstr m P, Dalsgaard T, Hulth S, et al. Anaerobic ammonium oxidation by nitrite (anammox):Implications for N-2 production in coastal marine sediments[J]. Geochimica et Cosmochimica Acta, 2005, 69(8):2057-2065.

    Google Scholar

    [18] Schubert C J, Durisch-Kaiser E, Wehrli B, et al. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika)[J]. Environmental Microbiology, 2006, 8(10):1857-1863.

    Google Scholar

    [19] Penton C R, Devol A H, Tiedje J M. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments[J]. Applied and Environmental Microbiology, 2006, 72(10):6829-6832.

    Google Scholar

    [20] Hu B-l, Rush D, van der Biezen E, et al. New anaerobic, ammonium-oxidizing community enriched from peat soil[J]. Applied and Environmental Microbiology, 2011, 77(3):966-971.

    Google Scholar

    [21] Moore T, Xing Y, Lazenby B, et al. Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater[J]. Environmental Science & Technology, 2011, 45(17):7217-7225.

    Google Scholar

    [22] Jetten M S M, Strous M, van de Pas-Schoonen K T, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1999, 22(5):421-437.

    Google Scholar

    [23] Kuenen J G, Jetten M S M. Extraordinary anaerobic ammonium oxidising bacteria[J]. ASM News, 2001, 67(9):456-463.

    Google Scholar

    [24] Strous M, Fuerst J A, Kramer E H M, et al. Missing lithotroph identified as new planctomycete[J]. Nature, 1999, 400(6743):446-449.

    Google Scholar

    [25] Kartal B, Rattray J, van Niftrik L A, et al. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2007, 30(1):39-49.

    Google Scholar

    [26] Schmid M C, Risgaard-Petersen N, Van De Vossenberg J, et al. Anaerobic ammonium-oxidizing bacteria in marine environments:widespread occurrence but low diversity[J]. Environmental Microbiology, 2007, 9(6):1476-1484.

    Google Scholar

    [27] Quan Z X, Rhee S K, Zuo J E, et al. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor[J]. Environmental Microbiology, 2008, 10(11):3130-3139.

    Google Scholar

    [28] Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5):589-596.

    Google Scholar

    [29] Kartal B, Kuypers M M M, Lavik G, et al. Anammox bacteria disguised as denitrifiers:nitrate reduction to dinitrogen gas via nitrite and ammonium[J]. Environmental Microbiology, 2007, 9(3):635-642.

    Google Scholar

    [30] Woebken D, Fuchs B A, Kuypers M A A, et al. Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system[J]. Applied and Environmental Microbiology, 2007, 73(14):4648-4657.

    Google Scholar

    [31] Trimmer M, Nicholls J C. Production of nitrogen gas via anammox and denitrification in intact sediment cores along a continental shelf to slope transect in the North Atlantic[J]. Limnology and Oceanography, 2009, 54(2):577-589.

    Google Scholar

    [32] Jaeschke A, Ziegler M, Hopmans E C, et al. Molecular fossil evidence for anaerobic ammonium oxidation in the Arabian Sea over the last glacial cycle[J]. Paleoceanography, 2009, 24(2):PA2202.

    Google Scholar

    [33] Jaeschke A, Abbas B, Zabel M, et al. Molecular evidence for anaerobic ammonium-oxidizing (anammox) bacteria in continental shelf and slope sediments off northwest Africa[J]. Limnology and Oceanography, 2010, 55(1):365-376.

    Google Scholar

    [34] Brandsma J, van de Vossenberg J, Risgaard-Petersen N, et al. A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden[J]. Environmental Microbiology Reports, 2011, 3(3):360-366.

    Google Scholar

    [35] Van de Graaf A A, De Bruin P, Robertson L, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor[J]. Microbiology, 1997, 143(7):2415-2421.

    Google Scholar

    [36] van Niftrik L, Geerts W J C, van Donselaar E G, et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria:Cell plan, glycogen storage, and localization of cytochrome proteins[J]. Journal of Bacteriology, 2008, 190(2):708-717.

    Google Scholar

    [37] Lindsay M R, Webb R I, Strous M, et al. Cell compartmentalisation in planctomycetes:Novel types of structural organisation for the bacterial cell[J]. Archives of Microbiology, 2001, 175(6):413-429.

    Google Scholar

    [38] van Niftrik L A, Fuerst J A, Damst J S S, et al. The anammoxosome:an intracytoplasmic compartment in anammox bacteria[J]. FEMS Microbiology Letters, 2004, 233(1):7-13.

    Google Scholar

    [39] Sinninghe Damst J S, Strous M, Rijpstra W I C, et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane[J]. Nature, 2002, 419(6908):708-712.

    Google Scholar

    [40] Boumann H A, Longo M L, Stroeve P, et al. Biophysical properties of membrane lipids of anammox bacteria:I. Ladderane phospholipids form highly organized fluid membranes[J]. Biochimica et Biophysica Acta (BBA) -Biomembranes, 2009, 1788(7):1444-1451.

    Google Scholar

    [41] van Niftrik L, Geerts W J C, van Donselaar E G, et al. Combined structural and chemical analysis of the anammoxosome:A membrane-bounded intracytoplasmic compartment in anammox bacteria[J]. Journal of Structural Biology, 2008, 161(3):401-410.

    Google Scholar

    [42] Boumann H A, Hopmans E C, Van De Leemput I, et al. Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups[J]. FEMS Microbiology Letters, 2006, 258(2):297-304.

    Google Scholar

    [43] Rattray J, van de Vossenberg J, Hopmans E, et al. Ladderane lipid distribution in four genera of anammox bacteria[J]. Archives of Microbiology, 2008, 190(1):51-66.

    Google Scholar

    [44] Rattray J, Strous M, Op den Camp H, et al. A comparative genomics study of genetic products potentially encoding ladderane lipid biosynthesis[J]. Biology Direct, 2009, 4(1):8.

    Google Scholar

    [45] Rattray J E, Geenevasen J A J, Van Niftrik L, et al. Carbon isotope-labelling experiments indicate that ladderane lipids of anammox bacteria are synthesized by a previously undescribed, novel pathway[J]. FEMS Microbiology Letters, 2009, 292(1):115-122.

    Google Scholar

    [46] Boumann H A, Stroeve P, Longo M L, et al. Biophysical properties of membrane lipids of anammox bacteria:Ⅱ. Impact of temperature and bacteriohopanoids[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009, 1788(7):1452-1457.

    Google Scholar

    [47] Armstrong R A, Lee C, Hedges J I, et al. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2001, 49(13):219-236.

    Google Scholar

    [48] Jaeschke A, Rooks C, Trimmer M, et al. Comparison of ladderane phospholipid and core lipids as indicators for anaerobic ammonium oxidation (anammox) in marine sediments[J]. Geochimica et Cosmochimica Acta, 2009, 73(7):2077-2088.

    Google Scholar

    [49] Jaeschke A, Hopmans E C, Wakeham S G, et al. The presence of ladderane lipids in the oxygen minimum zone of the Arabian Sea indicates nitrogen loss through anammox[J]. Limnology and Oceanography, 2007, 52(2):780-786.

    Google Scholar

    [50] Aries E, Doumenq P, Artaud J, et al. Occurrence of fatty acids linked to non-phospholipid compounds in the polar fraction of a marine sedimentary extract from Carteau cove, France[J]. Organic Geochemistry, 2001, 32(1):193-197.

    Google Scholar

    [51] Sturt H F, Summons R E, Smith K, et al. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry-new biomarkers for biogeochemistry and microbial ecology[J]. Rapid Communications in Mass Spectrometry, 2004, 18(6):617-628.

    Google Scholar

    [52] Zink K G, Wilkes H, Disko U, et al. Intact phospholipids-microbial "life markers" in marine deep subsurface sediments[J]. Organic Geochemistry, 2003, 34(6):755-769.

    Google Scholar

    [53] Zink K G, Mangelsdorf K, Granina L, et al. Estimation of bacterial biomass in subsurface sediments by quantifying intact membrane phospholipids[J]. Analytical and Bioanalytical Chemistry, 2008, 390(3):885-896.

    Google Scholar

    [54] Mazzella N, Molinet J, Syakti A D, et al. Assessment of the effects of hydrocarbon contamination on the sedimentary bacterial communities and determination of the polar lipid fraction purity:Relevance of intact phospholipid analysis[J]. Marine Chemistry, 2007, 103(3-4):304-317.

    Google Scholar

    [55] Rtters H, Sass H, Cypionka H, et al. Microbial communities in a Wadden Sea sediment core-clues from analyses of intact glyceride lipids, and released fatty acids[J]. Organic Geochemistry, 2002, 33(7):803-816.

    Google Scholar

    [56] Lanekoff I, Karlsson R. Analysis of intact ladderane phospholipids, originating from viable anammox bacteria, using RP-LC-ESI-MS[J]. Analytical and Bioanalytical Chemistry, 2010, 397(8):3543-3551.

    Google Scholar

    [57] Strous M, Van Gerven E, Kuenen J G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge[J]. Applied and Environmental Microbiology, 1997, 63(6):2446-2448.

    Google Scholar

    [58] Aller R C, Heilbrun C, Panzeca C, et al. Coupling between sedimentary dynamics, early diagenetic processes, and biogeochemical cycling in the Amazon Guianas mobile mud belt:coastal French Guiana[J]. Marine Geology, 2004, 208(2-4):331-360.

    Google Scholar

    [59] Rysgaard S, Glud R N, Risgaard-Petersen N, et al. Denitrification and anammox activity in Arctic marine sediments[J]. Limnology and Oceanography, 2004, 49(5):1493-1502.

    Google Scholar

    [60] Risgaard-Petersen N, Meyer R L, Revsbech N P. Denitrification and anaerobic ammonium oxidation in sediments:effects of microphytobenthos and NO3-[J]. Aquatic Microbial Ecology, 2005, 40(1):67-76.

    Google Scholar

    [61] Trimmer M, Nicholls J C, Morley N, et al. Biphasic behavior of anammox regulated by nitrite and nitrate in an estuarine sediment[J]. Applied and Environmental Microbiology, 2005, 71(4):1923-1930.

    Google Scholar

    [62] Strous M, Kuenen J G, Jetten M S M. Key Physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999, 65(7):3248-3250.

    Google Scholar

    [63] Dalsgaard T, Thamdrup B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments[J]. Applied and Environmental Microbiology, 2002, 68(8):3802-3808.

    Google Scholar

    [64] Byrne N, Strous M, Crepeau V, et al. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents[J]. The ISME Journal, 2009, 3(1):117-123.

    Google Scholar

    [65] Jaeschke A, Op den Camp H J M, Harhangi H, et al. 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs[J]. FEMS Microbiology Ecology, 2009, 67(3):343-350.

    Google Scholar

    [66] Rattray J E, van de Vossenberg J, Jaeschke A, et al. Impact of temperature on ladderane lipid distribution in anammox bacteria[J]. Applied and Environmental Microbiology, 2010, 76(5):1596-1603.

    Google Scholar

    [67] Jaeschke A, Lewan M D, Hopmans E C, et al. Thermal stability of ladderane lipids as determined by hydrous pyrolysis[J]. Organic Geochemistry, 2008, 39(12):1735-1741.

    Google Scholar

    [68] Sinninghe Damst J S, Rijpstra W I C, Geenevasen J A J, et al. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox)[J]. The FEBS Journal, 2005, 272(16):4270-4283.

    Google Scholar

    [69] Hopmans E C, Kienhuis M V M, Rattray J E, et al. Improved analysis of ladderane lipids in biomass and sediments using high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2006, 20(14):2099-2103.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1091) PDF downloads(3) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint