[1] |
Gruber N. The Ocean Carbon Cycle and Climate[M]. Dordrecht, Netherlands:Kluwer Academic Publishers, 2004:97-148.
Google Scholar
|
[2] |
Postgate J R. Biological nitrogen fixation[J]. Nature, 1970, 226(5240):25-27.
Google Scholar
|
[3] |
Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea:How can it occur?[J]. Biogeochemistry, 1991, 13(2):87-115.
Google Scholar
|
[4] |
Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J]. Applied and Environmental Microbiology, 2002, 68(3):1312-1318.
Google Scholar
|
[5] |
Francis C A, Beman J M, Kuypers M M M. New processes and players in the nitrogen cycle:the microbial ecology of anaerobic and archaeal ammonia oxidation[J]. ISME J, 2007, 1(1):19-27.
Google Scholar
|
[6] |
Hamm R E, Thompson T G. Dissolved nitrogen in the sea water of the Northeast Pacific with notes on the total carbon dioxide and the dissolved oxygen[J]. Journal of Marine Research, 1941, 4(2915):11-27.
Google Scholar
|
[7] |
Richards F A. Chemical Oceanography[M]. London:Academic Press, 1965:611-645.
Google Scholar
|
[8] |
Broda E. Two kinds of lithotrophs missing in nature[J]. Zeitschrift für allgemeine Mikrobiologie, 1977, 17(6):491-493.
Google Scholar
|
[9] |
Mulder A, van de Graaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3):177-184.
Google Scholar
|
[10] |
van de Graaf A, Mulder A, de Bruijn P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology, 1995, 61(4):1246-1251.
Google Scholar
|
[11] |
Dalsgaard T, Canfield D E, Petersen J, et al. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica[J]. Nature, 2003, 422(6932):606-608.
Google Scholar
|
[12] |
Kuypers M M M, Sliekers A O, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature, 2003, 422(6932):608-611.
Google Scholar
|
[13] |
Kuypers M M M, Lavik G, Woebken D, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation[C]//Proceedings of the National Academy of Sciences of the United States of America. 2005, 102(18):6478-6483.
Google Scholar
|
[14] |
Hamersley M R, Lavik G, Woebken D, et al. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone[J]. Limnology and Oceanography, 2007, 52(3):923-933.
Google Scholar
|
[15] |
Trimmer M, Nicholls J C, Deflandre B. Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom[J]. Applied and Environmental Microbiology, 2003, 69(11):6447-6454.
Google Scholar
|
[16] |
Rysgaard S, Glud R N. Anaerobic N2 production in Arctic sea ice[J]. Limnology and Oceanography, 2004, 49(1):86-94.
Google Scholar
|
[17] |
Engstr m P, Dalsgaard T, Hulth S, et al. Anaerobic ammonium oxidation by nitrite (anammox):Implications for N-2 production in coastal marine sediments[J]. Geochimica et Cosmochimica Acta, 2005, 69(8):2057-2065.
Google Scholar
|
[18] |
Schubert C J, Durisch-Kaiser E, Wehrli B, et al. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika)[J]. Environmental Microbiology, 2006, 8(10):1857-1863.
Google Scholar
|
[19] |
Penton C R, Devol A H, Tiedje J M. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments[J]. Applied and Environmental Microbiology, 2006, 72(10):6829-6832.
Google Scholar
|
[20] |
Hu B-l, Rush D, van der Biezen E, et al. New anaerobic, ammonium-oxidizing community enriched from peat soil[J]. Applied and Environmental Microbiology, 2011, 77(3):966-971.
Google Scholar
|
[21] |
Moore T, Xing Y, Lazenby B, et al. Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater[J]. Environmental Science & Technology, 2011, 45(17):7217-7225.
Google Scholar
|
[22] |
Jetten M S M, Strous M, van de Pas-Schoonen K T, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1999, 22(5):421-437.
Google Scholar
|
[23] |
Kuenen J G, Jetten M S M. Extraordinary anaerobic ammonium oxidising bacteria[J]. ASM News, 2001, 67(9):456-463.
Google Scholar
|
[24] |
Strous M, Fuerst J A, Kramer E H M, et al. Missing lithotroph identified as new planctomycete[J]. Nature, 1999, 400(6743):446-449.
Google Scholar
|
[25] |
Kartal B, Rattray J, van Niftrik L A, et al. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2007, 30(1):39-49.
Google Scholar
|
[26] |
Schmid M C, Risgaard-Petersen N, Van De Vossenberg J, et al. Anaerobic ammonium-oxidizing bacteria in marine environments:widespread occurrence but low diversity[J]. Environmental Microbiology, 2007, 9(6):1476-1484.
Google Scholar
|
[27] |
Quan Z X, Rhee S K, Zuo J E, et al. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor[J]. Environmental Microbiology, 2008, 10(11):3130-3139.
Google Scholar
|
[28] |
Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5):589-596.
Google Scholar
|
[29] |
Kartal B, Kuypers M M M, Lavik G, et al. Anammox bacteria disguised as denitrifiers:nitrate reduction to dinitrogen gas via nitrite and ammonium[J]. Environmental Microbiology, 2007, 9(3):635-642.
Google Scholar
|
[30] |
Woebken D, Fuchs B A, Kuypers M A A, et al. Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system[J]. Applied and Environmental Microbiology, 2007, 73(14):4648-4657.
Google Scholar
|
[31] |
Trimmer M, Nicholls J C. Production of nitrogen gas via anammox and denitrification in intact sediment cores along a continental shelf to slope transect in the North Atlantic[J]. Limnology and Oceanography, 2009, 54(2):577-589.
Google Scholar
|
[32] |
Jaeschke A, Ziegler M, Hopmans E C, et al. Molecular fossil evidence for anaerobic ammonium oxidation in the Arabian Sea over the last glacial cycle[J]. Paleoceanography, 2009, 24(2):PA2202.
Google Scholar
|
[33] |
Jaeschke A, Abbas B, Zabel M, et al. Molecular evidence for anaerobic ammonium-oxidizing (anammox) bacteria in continental shelf and slope sediments off northwest Africa[J]. Limnology and Oceanography, 2010, 55(1):365-376.
Google Scholar
|
[34] |
Brandsma J, van de Vossenberg J, Risgaard-Petersen N, et al. A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden[J]. Environmental Microbiology Reports, 2011, 3(3):360-366.
Google Scholar
|
[35] |
Van de Graaf A A, De Bruin P, Robertson L, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor[J]. Microbiology, 1997, 143(7):2415-2421.
Google Scholar
|
[36] |
van Niftrik L, Geerts W J C, van Donselaar E G, et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria:Cell plan, glycogen storage, and localization of cytochrome proteins[J]. Journal of Bacteriology, 2008, 190(2):708-717.
Google Scholar
|
[37] |
Lindsay M R, Webb R I, Strous M, et al. Cell compartmentalisation in planctomycetes:Novel types of structural organisation for the bacterial cell[J]. Archives of Microbiology, 2001, 175(6):413-429.
Google Scholar
|
[38] |
van Niftrik L A, Fuerst J A, Damst J S S, et al. The anammoxosome:an intracytoplasmic compartment in anammox bacteria[J]. FEMS Microbiology Letters, 2004, 233(1):7-13.
Google Scholar
|
[39] |
Sinninghe Damst J S, Strous M, Rijpstra W I C, et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane[J]. Nature, 2002, 419(6908):708-712.
Google Scholar
|
[40] |
Boumann H A, Longo M L, Stroeve P, et al. Biophysical properties of membrane lipids of anammox bacteria:I. Ladderane phospholipids form highly organized fluid membranes[J]. Biochimica et Biophysica Acta (BBA) -Biomembranes, 2009, 1788(7):1444-1451.
Google Scholar
|
[41] |
van Niftrik L, Geerts W J C, van Donselaar E G, et al. Combined structural and chemical analysis of the anammoxosome:A membrane-bounded intracytoplasmic compartment in anammox bacteria[J]. Journal of Structural Biology, 2008, 161(3):401-410.
Google Scholar
|
[42] |
Boumann H A, Hopmans E C, Van De Leemput I, et al. Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups[J]. FEMS Microbiology Letters, 2006, 258(2):297-304.
Google Scholar
|
[43] |
Rattray J, van de Vossenberg J, Hopmans E, et al. Ladderane lipid distribution in four genera of anammox bacteria[J]. Archives of Microbiology, 2008, 190(1):51-66.
Google Scholar
|
[44] |
Rattray J, Strous M, Op den Camp H, et al. A comparative genomics study of genetic products potentially encoding ladderane lipid biosynthesis[J]. Biology Direct, 2009, 4(1):8.
Google Scholar
|
[45] |
Rattray J E, Geenevasen J A J, Van Niftrik L, et al. Carbon isotope-labelling experiments indicate that ladderane lipids of anammox bacteria are synthesized by a previously undescribed, novel pathway[J]. FEMS Microbiology Letters, 2009, 292(1):115-122.
Google Scholar
|
[46] |
Boumann H A, Stroeve P, Longo M L, et al. Biophysical properties of membrane lipids of anammox bacteria:Ⅱ. Impact of temperature and bacteriohopanoids[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009, 1788(7):1452-1457.
Google Scholar
|
[47] |
Armstrong R A, Lee C, Hedges J I, et al. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2001, 49(13):219-236.
Google Scholar
|
[48] |
Jaeschke A, Rooks C, Trimmer M, et al. Comparison of ladderane phospholipid and core lipids as indicators for anaerobic ammonium oxidation (anammox) in marine sediments[J]. Geochimica et Cosmochimica Acta, 2009, 73(7):2077-2088.
Google Scholar
|
[49] |
Jaeschke A, Hopmans E C, Wakeham S G, et al. The presence of ladderane lipids in the oxygen minimum zone of the Arabian Sea indicates nitrogen loss through anammox[J]. Limnology and Oceanography, 2007, 52(2):780-786.
Google Scholar
|
[50] |
Aries E, Doumenq P, Artaud J, et al. Occurrence of fatty acids linked to non-phospholipid compounds in the polar fraction of a marine sedimentary extract from Carteau cove, France[J]. Organic Geochemistry, 2001, 32(1):193-197.
Google Scholar
|
[51] |
Sturt H F, Summons R E, Smith K, et al. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry-new biomarkers for biogeochemistry and microbial ecology[J]. Rapid Communications in Mass Spectrometry, 2004, 18(6):617-628.
Google Scholar
|
[52] |
Zink K G, Wilkes H, Disko U, et al. Intact phospholipids-microbial "life markers" in marine deep subsurface sediments[J]. Organic Geochemistry, 2003, 34(6):755-769.
Google Scholar
|
[53] |
Zink K G, Mangelsdorf K, Granina L, et al. Estimation of bacterial biomass in subsurface sediments by quantifying intact membrane phospholipids[J]. Analytical and Bioanalytical Chemistry, 2008, 390(3):885-896.
Google Scholar
|
[54] |
Mazzella N, Molinet J, Syakti A D, et al. Assessment of the effects of hydrocarbon contamination on the sedimentary bacterial communities and determination of the polar lipid fraction purity:Relevance of intact phospholipid analysis[J]. Marine Chemistry, 2007, 103(3-4):304-317.
Google Scholar
|
[55] |
Rtters H, Sass H, Cypionka H, et al. Microbial communities in a Wadden Sea sediment core-clues from analyses of intact glyceride lipids, and released fatty acids[J]. Organic Geochemistry, 2002, 33(7):803-816.
Google Scholar
|
[56] |
Lanekoff I, Karlsson R. Analysis of intact ladderane phospholipids, originating from viable anammox bacteria, using RP-LC-ESI-MS[J]. Analytical and Bioanalytical Chemistry, 2010, 397(8):3543-3551.
Google Scholar
|
[57] |
Strous M, Van Gerven E, Kuenen J G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge[J]. Applied and Environmental Microbiology, 1997, 63(6):2446-2448.
Google Scholar
|
[58] |
Aller R C, Heilbrun C, Panzeca C, et al. Coupling between sedimentary dynamics, early diagenetic processes, and biogeochemical cycling in the Amazon Guianas mobile mud belt:coastal French Guiana[J]. Marine Geology, 2004, 208(2-4):331-360.
Google Scholar
|
[59] |
Rysgaard S, Glud R N, Risgaard-Petersen N, et al. Denitrification and anammox activity in Arctic marine sediments[J]. Limnology and Oceanography, 2004, 49(5):1493-1502.
Google Scholar
|
[60] |
Risgaard-Petersen N, Meyer R L, Revsbech N P. Denitrification and anaerobic ammonium oxidation in sediments:effects of microphytobenthos and NO3-[J]. Aquatic Microbial Ecology, 2005, 40(1):67-76.
Google Scholar
|
[61] |
Trimmer M, Nicholls J C, Morley N, et al. Biphasic behavior of anammox regulated by nitrite and nitrate in an estuarine sediment[J]. Applied and Environmental Microbiology, 2005, 71(4):1923-1930.
Google Scholar
|
[62] |
Strous M, Kuenen J G, Jetten M S M. Key Physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999, 65(7):3248-3250.
Google Scholar
|
[63] |
Dalsgaard T, Thamdrup B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments[J]. Applied and Environmental Microbiology, 2002, 68(8):3802-3808.
Google Scholar
|
[64] |
Byrne N, Strous M, Crepeau V, et al. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents[J]. The ISME Journal, 2009, 3(1):117-123.
Google Scholar
|
[65] |
Jaeschke A, Op den Camp H J M, Harhangi H, et al. 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs[J]. FEMS Microbiology Ecology, 2009, 67(3):343-350.
Google Scholar
|
[66] |
Rattray J E, van de Vossenberg J, Jaeschke A, et al. Impact of temperature on ladderane lipid distribution in anammox bacteria[J]. Applied and Environmental Microbiology, 2010, 76(5):1596-1603.
Google Scholar
|
[67] |
Jaeschke A, Lewan M D, Hopmans E C, et al. Thermal stability of ladderane lipids as determined by hydrous pyrolysis[J]. Organic Geochemistry, 2008, 39(12):1735-1741.
Google Scholar
|
[68] |
Sinninghe Damst J S, Rijpstra W I C, Geenevasen J A J, et al. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox)[J]. The FEBS Journal, 2005, 272(16):4270-4283.
Google Scholar
|
[69] |
Hopmans E C, Kienhuis M V M, Rattray J E, et al. Improved analysis of ladderane lipids in biomass and sediments using high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2006, 20(14):2099-2103.
Google Scholar
|