2013 Vol. 33, No. 3
Article Contents

JI Shunchuan, PENG Tingjiang, NIE Junsheng, PENG Wenbin. QUANTITATIVE PALEOTEMPERERATURE RECONSTRUCTION OF THE CHINESE LOESS PLATEAU: A REVIEW[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 151-158. doi: 10.3724/SP.J.1140.2013.03151
Citation: JI Shunchuan, PENG Tingjiang, NIE Junsheng, PENG Wenbin. QUANTITATIVE PALEOTEMPERERATURE RECONSTRUCTION OF THE CHINESE LOESS PLATEAU: A REVIEW[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 151-158. doi: 10.3724/SP.J.1140.2013.03151

QUANTITATIVE PALEOTEMPERERATURE RECONSTRUCTION OF THE CHINESE LOESS PLATEAU: A REVIEW

  • The continuous late Miocene-Pliocene red-clay sequence and the Quaternary loess sequence on the Chinese Loess Plateau (CLP) have provided valuable information for the study of Asian paleoclimate history. Although numerous climatic proxies have been applied to Chinese loess, few are able to reflect paleotemperature history of the CLP. Here we reviewed the theory of two novel paleotemperature proxies (MBT/CBT, and "clumped isotope") and their application to the CLP to further understand the temperature history of the CLP. Applying these two proxies to the same materials will be able to further test their validity in reflecting temperature history on the CLP and is the natural step in future paleoclimate studies.
  • 加载中
  • [1] Liu T S. Loess and the Environment[M]. Beijing:China Ocean Press, 1985.

    Google Scholar

    [2] An Z S, Kutzbach J E, Prell W L, et al, Evolution of Asian monsoons and phased uplift of the Himalaya -Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411:62-66.

    Google Scholar

    [3] Guo Z T, Peng S Z, Hao Q Z, et al, Late Miocene -Pliocene development of Asian aridification asrecorded in the red-earth formation in northern China[J].Global and Planetary Change, 2004, 41:135-145

    Google Scholar

    [4] Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375:305-308.

    Google Scholar

    [5] Guo Z T, Liu T S, Fedoroff N, et al. Climate extremes in Loess of China coupled with the strength of deep-water formation in the North Atlantic[J]. Global and Planetary Change,1998,18:113-128.

    Google Scholar

    [6] Fang X M, Li J J, van der Voo R. Rock magnetic and grain size evidence for intensified Asian atmospheric circulation since 800000 years BP related to Tibetan uplift[J]. Earth and Planetary Science Letters, 1999, 165:129-144.

    Google Scholar

    [7] Ding Z L, Yang S L, Sun J M, et al. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long term Asian monsoon evolution in the last 7.0 Ma[J]. Earth and Planetary Science Letters,2001,85:99-109.

    Google Scholar

    [8] Nie J S, King J W, Fang X M. Correlation between the magnetic susceptibility record of the Chinese aeolian sequences and the marine benthic oxygen isotope record[J]. Geochemistry Geophysics Geosystems, 2008, 9:1-7.

    Google Scholar

    [9] Kukla G, An Z S, Melice J, et al. Magnetic susceptibility of Chinese Loess:Transactions of the Royal Society of Edinburgh[J]. Earth Sciences,1990, 81:263-288.

    Google Scholar

    [10] Guo Z, Liu T, Guiot J, et al. High frequency pulses of East Asian monsoon climate in the last two glaciations:Link with the North Atlantic[J]. Climate Dynamics, 1996,12:701-709.

    Google Scholar

    [11] Sun D H, Shaw J, An Z S, et al. Magnetostratig-raphy and paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic Eolian sediments from the Chinese loess plateau[J]. Geophysical Research Letters, 1998, 25:85-88.

    Google Scholar

    [12] Lu H Y, Liu X D, Zhang F Q, et al. Astronomical calibration of loess-paleosol deposits at Luochuan,central Chinese Loess Plateau[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 1999, 154:237-246.

    Google Scholar

    [13] Sun J M. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2002, 203:845-859.

    Google Scholar

    [14] Bloemendal J,and Liu X M. Rock magnetism and geochemistry of two plio-pleistocene Chinese loess-palaeosol sequences-implications for Quantitative paleoprecipitation reconstruction[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2005, 226:149-166.

    Google Scholar

    [15] Song Y G, Fang X M, Torii M, et al. Late Neogene rock magnetic record of climatic variation from Chinese eolian sediments related to uplift of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2006,30:324-332.

    Google Scholar

    [16] Lu H Y, Wu N Q, Liu K B, et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China Ⅱ:palaeoenvironmental reconstruction in the Loess Plateau[J]. Quaternary Science Reviews, 2007,26:759-772.

    Google Scholar

    [17] Heller F, Liu T S. Magnetostratigraphical dating of loess deposits in China[J]. Nature, 1982,300:431-433.

    Google Scholar

    [18] An Z S, Kukla G, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of Central China during the last 130000 years[J]. Quaternary Research, 1991,36:29-36.

    Google Scholar

    [19] Lu H Y, Han J M, Wu N Q, et al. Magnetic susceptibility of the modern soils in China and paleoclimatic significance[J]. Science in China (Series B), 1994, 24:1290-1297.

    Google Scholar

    [20] Liu X M, Rolph T, Bloemendal J,et al. Quantitative estimates of palaeoprecipitation at Xifeng area, in the loess plateau of China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1995, 113:243-248.

    Google Scholar

    [21] Maher B A, Thompson R, Zhou L P. Spatial and temporal reconstructions of changes in the Asia paleomonsoon:a new mineral magnetic approach[J].Earth and Planetary Science Letters,1994,125:461-471.

    Google Scholar

    [22] Nie J S, Song Y, King J W, et al. Consistent grainsize distribution of pedogenic maghemite of surface soils and Miocene loessic soils on the Chinese Loess Plateau[J]. Journal of Quaternary Science, 2010,25:261-266.

    Google Scholar

    [23] Lu H Y, Han J M, Wu N Q, et al. Magnetic susceptibility of the modern soils in China and paleoclimatic significance[J]. Science in China (Series B), 1994,24:1290-1297.

    Google Scholar

    [24] Han J M, Wu N Q, et al. The magnetic susceptibility of modern soils in China and its use for paleoclimate reconstruction[J]. Earth and Environmental Science, 1996, 40:262-275.

    Google Scholar

    [25] Wang Z R, Schauble E A, Eiler J M. Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases[J]. Geochimica et Cosmochimica Acta, 2004, 68:4779-4797.

    Google Scholar

    [26] Eiler J M. "Clumped-isotope" geochemistry:The study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007,262:309-327.

    Google Scholar

    [27] Eiler J M. A practical guide to clumped isotope geochemistry[J]. geochimica et Cosmochimica Acta, 2006, 70:A157.

    Google Scholar

    [28] Ghosh P, Adkins J, Affek H, et al. 13C-18O bonds in carbonate minerals:A new kind of Paleoth-Ermometer[J]. Geochimica et Cosmochimica Acta,2006, 70:1439-1456.

    Google Scholar

    [29] Schauble E A, Ghosh P, Eiler J M. Preferential formation of 13C-18O bonds in carbonate minerals, estimated using first-principles lattice dynamics[J]. Geochimica et Cosmochimica Acta,2006, 70:2510-2529.

    Google Scholar

    [30] Affek H P, Bar-Matthews M, Ayalon, et al. Glacial/interglacial temperature variations in Soreq cave Speleothemsas recorded by "clumped isotope" thermometry[J]. Geochimica et Gosmochimica Acta, 2008, 72:5351-5360.

    Google Scholar

    [31] Sun Q, Chu G Q, Liu M M. Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal[J]. Journal of Geophysical Reseach, 2011,116:G01008.

    Google Scholar

    [32] Eiler J M. Paleoclimate reconstruction using carbonate clumped isotope thermometry[J]. Quaternary Sciengce Reciews,2011,30(25-26):3575-3588.

    Google Scholar

    [33] Dennis K J, Affek H P, Passey B H, et al. Defining an absolute reference frame for "clumped isotope" studies of O2[J]. Geochimicaet Cosmochimica Acta,2011,75(22):7117-7131.

    Google Scholar

    [34] Keating-Bitonti C R, Ivany L C,Affek H P,et al. Warm, not super-hot, temperatures in the early Eocene subtropics[J]. Geology,2011,39(8):771-774.

    Google Scholar

    [35] Daeron M, Guo W, Eiler J, et al. (CO)-C-13-O-18 clumping in speleothems:Observations from natural caves and precipitation experimes[J]. Geochimica et Cosmochimica Acta, 2011,75(12):3303-3317.

    Google Scholar

    [36] Peterse F, Prins M A, Beets C J, et al. Decoupled warming and monsoon precipitation in East Asia over the last deglaciation[J]. Earth and Planntary Science Letters,2011,301(1-2):256-264.

    Google Scholar

    [37] Li G, Nie J S, Steven C,et al. The importance of solar insolation on the temperature variations for the past 110 kyr on the Chinese loess plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2012,317-318:128-133.

    Google Scholar

    [38] Zachos J C, Schouten S, Bohaty S, et al. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene thermal maximum:Inferences from TEX86 and isotope data[J]. Geology, 2006, 34(9):737-740.

    Google Scholar

    [39] Kim J H, Schouten S, Hopmans E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J]. Geochimica et Cosmochimica Acta, 2008,72(4):1154-1173.

    Google Scholar

    [40] Hopmans E C, Weijers J W H, Schefu E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224:107-116.

    Google Scholar

    [41] Peterse F, Kim J H, Schouten S, et al. Constraintson the application of the MBT/CBT palaeothermometer in high latitude environments (Svalbard,Norway)[J]. Organic Geochemistry, 2009,40:692-699.

    Google Scholar

    [42] Weijers J W H, Schouten S, van den Donker J C,et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta, 2007,71:703-713.

    Google Scholar

    [43] Weijers J W H, Schefu E, Schouten S, et al. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation[J]. Science, 2007, 315:1701-1704.

    Google Scholar

    [44] Weijers J W H, Schouten S, Schefu E, et al. Disentangling marine, soil and plant organic carbon contributions to continental margin sediments:A multi-proxy approach in a 20000 year sediment record from the Congo deep sea fan[J]. Geochimicaet Cosmochimica Acta, 2009, 73:119-132.

    Google Scholar

    [45] Damst S J S, Ossebaar J, Abbas B, et al. Fluxes and distribution of tetraether lipids in an equatorial African lake:constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings[J]. Geochimica et Cosmochimica Acta, 2009, 73:4232-4249.

    Google Scholar

    [46] Tierney J E, Russella J M, Eggermontc H,et al. Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments[J]. Geochimica et Cosmochimica Acta, 2010,74:4902-4918.

    Google Scholar

    [47] Hopmans E C, Schouten S, Pancost R D, et al. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2000, 14:585-589.

    Google Scholar

    [48] Hao Q Z, Guo Z T, Qiao Y S, et al. Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China[J]. Quaternary Science Reviews, 2010, 29:3317-3326.

    Google Scholar

    [49] Oldfield F, Bloemendal J. Rock-magnetic properties confirm the eolian origin of Miocene sequences from the west of the Chinese loess plateau sediment[J]. Geol., 2010,doi:10.1016/j. sedgeo.2010.11.009

    Google Scholar

    [50] 党心悦, 杨欢,谢树成, 末次冰期以来渭南黄土类脂物的分布特征及其古气候意义[C]//中国古生物学会第26届学术年会论文集.2011.[DANG Xinyue, YANG Huan, XIE Shucheng. Characteristics of the distribution of lipids in the Weinan loess and its paleoclimate significance since the Last Glacial[C]//The 26th session of the Palaeontological Society of China. 2011.]

    Google Scholar

    [51] Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society,1947:562-581.

    Google Scholar

    [52] Suarez M B, Passey B H, Kaakinen A. Paleosol carbonate multiple isotopologue signature of active East Asian summer monsoons during the late Miocene and Pliocene[J]. Geology, 2011,39(12):1151-1154.

    Google Scholar

    [53] Came R E, Eiler J M, Veizer J, et al. Coupling of surface temperatures and atsmospheric CO2 concentrations during the Palaeozoic era[J]. Nature,2007,449:198-201.

    Google Scholar

    [54] Passey B H, Levina N E, Cerling T E, et al. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol Carbonates[J]. Earth and Planetary Sciences,2010, 107(25):11245-11249.

    Google Scholar

    [55] Huntington K W, Eiler J M, Affek H P, et al. Methods and limitations of "clumped" CO2 isotope(Δ47) analysis by gas-source isotope ratio mass spectrometry[J]. Research Article,2009,44(9):1318-1329.

    Google Scholar

    [56] Eilera J M, Schaublea E.18O13C16O in earth's atmosphere[J]. Geochimica et Cosmochimica Acta, 2004, 23(68):4767-4777.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(986) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint