[1] |
Liu T S. Loess and the Environment[M]. Beijing:China Ocean Press, 1985.
Google Scholar
|
[2] |
An Z S, Kutzbach J E, Prell W L, et al, Evolution of Asian monsoons and phased uplift of the Himalaya -Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411:62-66.
Google Scholar
|
[3] |
Guo Z T, Peng S Z, Hao Q Z, et al, Late Miocene -Pliocene development of Asian aridification asrecorded in the red-earth formation in northern China[J].Global and Planetary Change, 2004, 41:135-145
Google Scholar
|
[4] |
Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375:305-308.
Google Scholar
|
[5] |
Guo Z T, Liu T S, Fedoroff N, et al. Climate extremes in Loess of China coupled with the strength of deep-water formation in the North Atlantic[J]. Global and Planetary Change,1998,18:113-128.
Google Scholar
|
[6] |
Fang X M, Li J J, van der Voo R. Rock magnetic and grain size evidence for intensified Asian atmospheric circulation since 800000 years BP related to Tibetan uplift[J]. Earth and Planetary Science Letters, 1999, 165:129-144.
Google Scholar
|
[7] |
Ding Z L, Yang S L, Sun J M, et al. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long term Asian monsoon evolution in the last 7.0 Ma[J]. Earth and Planetary Science Letters,2001,85:99-109.
Google Scholar
|
[8] |
Nie J S, King J W, Fang X M. Correlation between the magnetic susceptibility record of the Chinese aeolian sequences and the marine benthic oxygen isotope record[J]. Geochemistry Geophysics Geosystems, 2008, 9:1-7.
Google Scholar
|
[9] |
Kukla G, An Z S, Melice J, et al. Magnetic susceptibility of Chinese Loess:Transactions of the Royal Society of Edinburgh[J]. Earth Sciences,1990, 81:263-288.
Google Scholar
|
[10] |
Guo Z, Liu T, Guiot J, et al. High frequency pulses of East Asian monsoon climate in the last two glaciations:Link with the North Atlantic[J]. Climate Dynamics, 1996,12:701-709.
Google Scholar
|
[11] |
Sun D H, Shaw J, An Z S, et al. Magnetostratig-raphy and paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic Eolian sediments from the Chinese loess plateau[J]. Geophysical Research Letters, 1998, 25:85-88.
Google Scholar
|
[12] |
Lu H Y, Liu X D, Zhang F Q, et al. Astronomical calibration of loess-paleosol deposits at Luochuan,central Chinese Loess Plateau[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 1999, 154:237-246.
Google Scholar
|
[13] |
Sun J M. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2002, 203:845-859.
Google Scholar
|
[14] |
Bloemendal J,and Liu X M. Rock magnetism and geochemistry of two plio-pleistocene Chinese loess-palaeosol sequences-implications for Quantitative paleoprecipitation reconstruction[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2005, 226:149-166.
Google Scholar
|
[15] |
Song Y G, Fang X M, Torii M, et al. Late Neogene rock magnetic record of climatic variation from Chinese eolian sediments related to uplift of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2006,30:324-332.
Google Scholar
|
[16] |
Lu H Y, Wu N Q, Liu K B, et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China Ⅱ:palaeoenvironmental reconstruction in the Loess Plateau[J]. Quaternary Science Reviews, 2007,26:759-772.
Google Scholar
|
[17] |
Heller F, Liu T S. Magnetostratigraphical dating of loess deposits in China[J]. Nature, 1982,300:431-433.
Google Scholar
|
[18] |
An Z S, Kukla G, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of Central China during the last 130000 years[J]. Quaternary Research, 1991,36:29-36.
Google Scholar
|
[19] |
Lu H Y, Han J M, Wu N Q, et al. Magnetic susceptibility of the modern soils in China and paleoclimatic significance[J]. Science in China (Series B), 1994, 24:1290-1297.
Google Scholar
|
[20] |
Liu X M, Rolph T, Bloemendal J,et al. Quantitative estimates of palaeoprecipitation at Xifeng area, in the loess plateau of China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1995, 113:243-248.
Google Scholar
|
[21] |
Maher B A, Thompson R, Zhou L P. Spatial and temporal reconstructions of changes in the Asia paleomonsoon:a new mineral magnetic approach[J].Earth and Planetary Science Letters,1994,125:461-471.
Google Scholar
|
[22] |
Nie J S, Song Y, King J W, et al. Consistent grainsize distribution of pedogenic maghemite of surface soils and Miocene loessic soils on the Chinese Loess Plateau[J]. Journal of Quaternary Science, 2010,25:261-266.
Google Scholar
|
[23] |
Lu H Y, Han J M, Wu N Q, et al. Magnetic susceptibility of the modern soils in China and paleoclimatic significance[J]. Science in China (Series B), 1994,24:1290-1297.
Google Scholar
|
[24] |
Han J M, Wu N Q, et al. The magnetic susceptibility of modern soils in China and its use for paleoclimate reconstruction[J]. Earth and Environmental Science, 1996, 40:262-275.
Google Scholar
|
[25] |
Wang Z R, Schauble E A, Eiler J M. Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases[J]. Geochimica et Cosmochimica Acta, 2004, 68:4779-4797.
Google Scholar
|
[26] |
Eiler J M. "Clumped-isotope" geochemistry:The study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007,262:309-327.
Google Scholar
|
[27] |
Eiler J M. A practical guide to clumped isotope geochemistry[J]. geochimica et Cosmochimica Acta, 2006, 70:A157.
Google Scholar
|
[28] |
Ghosh P, Adkins J, Affek H, et al. 13C-18O bonds in carbonate minerals:A new kind of Paleoth-Ermometer[J]. Geochimica et Cosmochimica Acta,2006, 70:1439-1456.
Google Scholar
|
[29] |
Schauble E A, Ghosh P, Eiler J M. Preferential formation of 13C-18O bonds in carbonate minerals, estimated using first-principles lattice dynamics[J]. Geochimica et Cosmochimica Acta,2006, 70:2510-2529.
Google Scholar
|
[30] |
Affek H P, Bar-Matthews M, Ayalon, et al. Glacial/interglacial temperature variations in Soreq cave Speleothemsas recorded by "clumped isotope" thermometry[J]. Geochimica et Gosmochimica Acta, 2008, 72:5351-5360.
Google Scholar
|
[31] |
Sun Q, Chu G Q, Liu M M. Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal[J]. Journal of Geophysical Reseach, 2011,116:G01008.
Google Scholar
|
[32] |
Eiler J M. Paleoclimate reconstruction using carbonate clumped isotope thermometry[J]. Quaternary Sciengce Reciews,2011,30(25-26):3575-3588.
Google Scholar
|
[33] |
Dennis K J, Affek H P, Passey B H, et al. Defining an absolute reference frame for "clumped isotope" studies of O2[J]. Geochimicaet Cosmochimica Acta,2011,75(22):7117-7131.
Google Scholar
|
[34] |
Keating-Bitonti C R, Ivany L C,Affek H P,et al. Warm, not super-hot, temperatures in the early Eocene subtropics[J]. Geology,2011,39(8):771-774.
Google Scholar
|
[35] |
Daeron M, Guo W, Eiler J, et al. (CO)-C-13-O-18 clumping in speleothems:Observations from natural caves and precipitation experimes[J]. Geochimica et Cosmochimica Acta, 2011,75(12):3303-3317.
Google Scholar
|
[36] |
Peterse F, Prins M A, Beets C J, et al. Decoupled warming and monsoon precipitation in East Asia over the last deglaciation[J]. Earth and Planntary Science Letters,2011,301(1-2):256-264.
Google Scholar
|
[37] |
Li G, Nie J S, Steven C,et al. The importance of solar insolation on the temperature variations for the past 110 kyr on the Chinese loess plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2012,317-318:128-133.
Google Scholar
|
[38] |
Zachos J C, Schouten S, Bohaty S, et al. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene thermal maximum:Inferences from TEX86 and isotope data[J]. Geology, 2006, 34(9):737-740.
Google Scholar
|
[39] |
Kim J H, Schouten S, Hopmans E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J]. Geochimica et Cosmochimica Acta, 2008,72(4):1154-1173.
Google Scholar
|
[40] |
Hopmans E C, Weijers J W H, Schefu E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224:107-116.
Google Scholar
|
[41] |
Peterse F, Kim J H, Schouten S, et al. Constraintson the application of the MBT/CBT palaeothermometer in high latitude environments (Svalbard,Norway)[J]. Organic Geochemistry, 2009,40:692-699.
Google Scholar
|
[42] |
Weijers J W H, Schouten S, van den Donker J C,et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta, 2007,71:703-713.
Google Scholar
|
[43] |
Weijers J W H, Schefu E, Schouten S, et al. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation[J]. Science, 2007, 315:1701-1704.
Google Scholar
|
[44] |
Weijers J W H, Schouten S, Schefu E, et al. Disentangling marine, soil and plant organic carbon contributions to continental margin sediments:A multi-proxy approach in a 20000 year sediment record from the Congo deep sea fan[J]. Geochimicaet Cosmochimica Acta, 2009, 73:119-132.
Google Scholar
|
[45] |
Damst S J S, Ossebaar J, Abbas B, et al. Fluxes and distribution of tetraether lipids in an equatorial African lake:constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings[J]. Geochimica et Cosmochimica Acta, 2009, 73:4232-4249.
Google Scholar
|
[46] |
Tierney J E, Russella J M, Eggermontc H,et al. Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments[J]. Geochimica et Cosmochimica Acta, 2010,74:4902-4918.
Google Scholar
|
[47] |
Hopmans E C, Schouten S, Pancost R D, et al. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2000, 14:585-589.
Google Scholar
|
[48] |
Hao Q Z, Guo Z T, Qiao Y S, et al. Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China[J]. Quaternary Science Reviews, 2010, 29:3317-3326.
Google Scholar
|
[49] |
Oldfield F, Bloemendal J. Rock-magnetic properties confirm the eolian origin of Miocene sequences from the west of the Chinese loess plateau sediment[J]. Geol., 2010,doi:10.1016/j. sedgeo.2010.11.009
Google Scholar
|
[50] |
党心悦, 杨欢,谢树成, 末次冰期以来渭南黄土类脂物的分布特征及其古气候意义[C]//中国古生物学会第26届学术年会论文集.2011.[DANG Xinyue, YANG Huan, XIE Shucheng. Characteristics of the distribution of lipids in the Weinan loess and its paleoclimate significance since the Last Glacial[C]//The 26th session of the Palaeontological Society of China. 2011.]
Google Scholar
|
[51] |
Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society,1947:562-581.
Google Scholar
|
[52] |
Suarez M B, Passey B H, Kaakinen A. Paleosol carbonate multiple isotopologue signature of active East Asian summer monsoons during the late Miocene and Pliocene[J]. Geology, 2011,39(12):1151-1154.
Google Scholar
|
[53] |
Came R E, Eiler J M, Veizer J, et al. Coupling of surface temperatures and atsmospheric CO2 concentrations during the Palaeozoic era[J]. Nature,2007,449:198-201.
Google Scholar
|
[54] |
Passey B H, Levina N E, Cerling T E, et al. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol Carbonates[J]. Earth and Planetary Sciences,2010, 107(25):11245-11249.
Google Scholar
|
[55] |
Huntington K W, Eiler J M, Affek H P, et al. Methods and limitations of "clumped" CO2 isotope(Δ47) analysis by gas-source isotope ratio mass spectrometry[J]. Research Article,2009,44(9):1318-1329.
Google Scholar
|
[56] |
Eilera J M, Schaublea E.18O13C16O in earth's atmosphere[J]. Geochimica et Cosmochimica Acta, 2004, 23(68):4767-4777.
Google Scholar
|