2012 Vol. 32, No. 4
Article Contents

LIANG Dan, LIU Chuanlian, SU Xiang. COCCOLITH VARIATIONS IN CENTRAL WEST PACIFIC WARM POOL AND THEIR RESPONSE TO ENVIRONMENTAL CHANGE DURING LATE QUATERNARY[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 115-121. doi: 10.3724/SP.J.1140.2012.04115
Citation: LIANG Dan, LIU Chuanlian, SU Xiang. COCCOLITH VARIATIONS IN CENTRAL WEST PACIFIC WARM POOL AND THEIR RESPONSE TO ENVIRONMENTAL CHANGE DURING LATE QUATERNARY[J]. Marine Geology & Quaternary Geology, 2012, 32(4): 115-121. doi: 10.3724/SP.J.1140.2012.04115

COCCOLITH VARIATIONS IN CENTRAL WEST PACIFIC WARM POOL AND THEIR RESPONSE TO ENVIRONMENTAL CHANGE DURING LATE QUATERNARY

  • The analysis of coccolith species and percentage for the past 380 ka from Site KX97321-2 of the central West Pacific Warm Pool has been carried out. The results show that the relative abundance of Florisphaera profunda increased in the last 380 ka, indicating the decline of nutricline depth and the decrease in primary productivity. The relative abundance of Gephyrocapsa spp. however, dropped in the last 380 ka. Gephyrocapsa caribbeanica was the most abundant species in the Mid-Brunhes interval as the result of the adaptive evolution to the Mid-Brunhes peculiar environment. Based on the spectrum analysis of primary productivity converted from F. profunda, 100 ka and 30 ka cycles were discovered during the last 380 ka. 20 ka cycle was found obvious in the 0~80 ka and 320~380 ka, and 40 ka cycle in the 80~320 ka.
  • 加载中
  • [1] Molfino B, McIntyre A. Precessional forcing of nutricline dynamics in the Equatorial Atlantic[J]. Science, 1990, 249:766-769.

    Google Scholar

    [2] Beaufort L, Lancelot Y, Camberlin P, et al. Insolation cycles as a major control of equatorial Indian Ocean primary production[J]. Science, 1997, 278:1451-1454.

    Google Scholar

    [3] Baumann K H, Cěpek M, Kinkel H. Coccolithophores as indicators of ocean water masses, surface water temperature, and paleoproductivity-examples from the South Atlantic[A]//Use of Proxies in Paleoceanography:Examples from the South Atlantic[C]. Springer-Verlag, 1999, 111-144.

    Google Scholar

    [4] Yan X, Ho C, Zheng Q, et al. Temperature and size variabilities of the western Pacific warm pool[J]. Science, 1992, 258:1643-1645.

    Google Scholar

    [5] 李克让, 周春平, 沙万英. 西太平洋暖池基本特征及其对气候的影响[J]. 地理学报, 1998, 53(6):511-519.

    Google Scholar

    [LI Kerang, ZHOU Chunping, SHA Wanying. Basic features of the warm pool in the Western Pacific and its impact on climate[J]. Acta Geographica Sinca, 1998, 53(6):511-519.]

    Google Scholar

    [6] Webster P, Magana V, Palmer T, et al. Monsoons:processes, predictability, and the prospects for prediction[J]. Journ. Geophys. Res., 1998, 103(C7):14451-14510.

    Google Scholar

    [7] Koutavas A, Lynch-Steieglitz J, Marchitto J, et al. El Nino like pattern in ice age tropical Pacific sea surface temperature[J]. Science, 2002, 297(12):226-230.

    Google Scholar

    [8] Lead W. The glacial tropical Pacific-not just a west side story[J]. Science, 2002, 297(12):202-203.

    Google Scholar

    [9] Stott L, Poulsen C, Lund S, et al. Super ENSO and glacial climate oscillations at millennial time scales[J]. Science, 2002, 297(12):222-226.

    Google Scholar

    [10] Philander G, Fedorow A. Role of tropics in changing the response to Milankovich forcing some three million years ago[J]. Paleoceanography, 2003, 18(2):1045.

    Google Scholar

    [11] Vosser K, Thunell R, Stott L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation[J]. Nature, 2003, 421(6919):152-155.

    Google Scholar

    [12] 周超,金海燕, 翦知湣. 赤道西太平洋晚第四纪古生产力变化:来自元素比值的证据[J]. 第四纪研究, 2011, 31(2):276-283.

    Google Scholar

    [ZHOU Chao, JIN Haiyan, JIAN Zhimin. Variations of the late Quaternary Paleo-productivity in the western equatorial Pacific:evidences from the elemental ratios[J]. Quaternary Science, 2011, 31(2):276-283.]

    Google Scholar

    [13] Dollfus D, Beaufort L. Fat neural network for recognition of position-normalized objects[J]. Neural Networks, 1999, 12:553-560.

    Google Scholar

    [14] Beaufort L, Dollfus D. Automatic recognition of coccoliths by dynamical neural networks[J]. Marine Micropaleont., 2004, 51:57-73.

    Google Scholar

    [15] 苏翔, 刘传联. 颗石藻自动鉴定系统及其古海洋学应用-以南海MD05-2901柱状样研究为例[J]. 微体古生物学报, 2008, 25(4):385-392.

    Google Scholar

    [SU Xiang, LIU Chuanlian. Application of automatic recognition system for coccoliths in Paleoceanography:a case study at Site MD05-2901, South China Sea[J]. Acta Micropalaeont. Sinica, 25(4):385-392.]

    Google Scholar

    [16] 苏翔, 刘传联. 南海颗石藻记录对大洋碳同位素低值事件的响应[J]. 海洋地质与第四纪地质, 2010, 30(6):67-72.

    Google Scholar

    [SU Xiang, LIU Chuanlian. Response of coccolith records in the South China Sea to carbon isotope minimum events[J]. Mar. Geology and Quat. Geology, 2010, 30(6):67-72.]

    Google Scholar

    [17] 俞文晔, 刘传联, 苏翔. 南海南部中布容期颗石藻化石记录及其意义[J]. 海洋地质与第四纪地质, 2011, 31(6):85-90.

    Google Scholar

    [YU Wenye, LIU Chuanlian, SU Xiang. Coccolith records and their meanings for the Mid-Brunhes interval in the Southern China Sea[J]. Mar. Geology & Quat. Geology, 2011, 31(6):85-90.]

    Google Scholar

    [18] Grelaud M, Schimmelmann A, Beaufort L. Coccolithophore response to climate and surface hydrography in Santa Barbara Basin, California, AD 1917-2004[J]. Biogeosciences, 2009, 6:2025-2039.

    Google Scholar

    [19] Beaufort L, Heussner S. Coccolithophorids on the continental slope of the Bay of Biscay-production, transport and contribution to mass fluxes[J]. Deep-Sea Res. Pt. Ⅱ, 1999, 46:2147-2174.

    Google Scholar

    [20] Silva A, Palma S, Moita M T. Coccolithophores in the upwelling waters of Portugal:Four years of weekly distribution in Lisbon Bay[J]. Cont. Shelf Res., 2008, 28:2601-2613.

    Google Scholar

    [21] Winter A, Jordan R, Roth P. Biogeography of living coccolithophores in oceanic waters[C]. Coccolithophores. Cambridge University, 1994:161-177.

    Google Scholar

    [22] Thierstein H, Geitzenauer K, Molfino B. Global synchroneity of Late Quaternary coccolith datum levels:validation by oxygen isotopes[J]. Geology, 1977, 5:400-404.

    Google Scholar

    [23] De Garidel-Thoron T, Beaufort L, Linsley B, et al. Millennial-scale dynamics of the East Asian winter monsoon during the last 200,000 years[J]. Paleoceanogaphy, 2001, 16:1-12.

    Google Scholar

    [24] Henriksson A. Coccolithophore response to oceanographic changes in the equatorial Atlantic during the last 2000,000 years[J]. Palaeo. Palaeo. Palaeo., 2000, 156:161-173.

    Google Scholar

    [25] Beaufort L, De Garidel T, Mix A, et al. ENSO-like forcing on oceanic primary production during the Late Pleistocene[J]. Science, 2001, 293:2440-2443.

    Google Scholar

    [26]

    [27] Pisias N, Mix A. Spatial and temporal oceanographic variability of the eastern equatorial Pacific during the late Pleistocene:Evidence from Radiolaria microfossils[J]. Paleoceanography, 1997, 12(3):381-393.

    Google Scholar

    [28] Petit J, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999; 399(6735):429-436.

    Google Scholar

    [29] Baumann K, Freitag T. Pleistocene fluctuations in the northern Benguela Current system as revealed by coccolith assemblages[J]. Marine Micropaleont., 2004, 52:195-215.

    Google Scholar

    [30] Mitchell-Innes B.A, Winter A. Coccolithophores:a major phytoplankton component in mature upwelled waters off the Cape Peninsula, South Africa in March 1983[J]. Mar. Biol., 1987, 95:25-30.

    Google Scholar

    [31] Fincham M J, Winter A. Paleoceanographic interpretations of coccoliths and oxygen-isotopes from the sediment surface of the Southwest Indian Ocean[J]. Mar. Micropaleontol., 1989, 13:325-351.

    Google Scholar

    [32] Kleijne A, Kroon D, Zevenboom W. Phytoplankton and foraminiferal frequencies in northern Indian Ocean and Red Sea surface waters[J]. Neth. J. Sea Res., 1989, 24:531-539.

    Google Scholar

    [33] Bollmann J. Morphology and biogeography of the genus Gephyrocapsa coccoliths in Holocene sediments[J]. Mar. Micropaleont., 1997, 29:319-350.

    Google Scholar

    [34] Aizawa C, Oba T, Okada H. Late Quaternary paleoceanography deduced from coccolith assemblages in a piston core recovered off the central Japan coast[J]. Mar. Micropaleont., 52:277-297.

    Google Scholar

    [35] Okada H. Biogeographic control of modern nannofossil assemblages in surface sediments of Ise Bay, Mikawa Bayand Kumanonada, off coast of Central Japan. Mem. Sci. Geol., 1992, 43:431-449.

    Google Scholar

    [36] Rochford D J. Nutrient Status of the Oceans around Australia[J]. CSIRO Aust. Rep.-Div. Fish. Oceanogr. 1977-79, 1980, 9-20.

    Google Scholar

    [37] Negri A, Giunta S. Calcareous nannofossil paleoecology in the sapropel S1 of the eastern Ionian Sea:paleoceanographic implications[J]. Palaeo. Palaeo. Palaeo., 2001, 169:101-112.

    Google Scholar

    [38] Giraudeau J. Distribution of recent nannofossil beneath the Benguela system:southwest African continental margin[J]. Mar. Geology, 1992, 108:219-237.

    Google Scholar

    [39] Winter A, Martin K. Late quaternary history of the Agulhas Current[J]. Paleoceanography, 1990, 5:479-486.

    Google Scholar

    [40] Okada H, Honjo, S. Distribution of coccolithophores in marginal seas along the western Pacific Ocean and in the Red Sea. Mar. Biol., 1975, 31:271-285.

    Google Scholar

    [41] Kleijne A. Morphology, taxonomy and distribution of extant coccolithophorids (calcareous nannoplankton)[D]. PhD Dissertation, Vrije Univ. Amsterdam, 1993, 0-321.

    Google Scholar

    [42] Brand L E. Physiological ecology of marine coccolithophores[A]//Coccolithophores[C]. Cambridge University Press, Cambridge, 1994, 39-49.

    Google Scholar

    [43] Okada H, Honjo S. The distribution of oceanic coccolithophorids in the Pacific[J]. Deep-Sea Res., 1973, 20:355-374.

    Google Scholar

    [44] Nishida S. Atlas of Pacific nannoplankton[J]. NOM, Spec. Paper 3, 1979, 1-23.

    Google Scholar

    [45] Reid F. Coccolithophorids from the North Pacific central gyre with notes on their vertical and seasonal distribution[J]. Micropaleont., 1980, 26:151-176.

    Google Scholar

    [46] Molfino B, McIntyre A. Precessional forcing of nutricline dynamics in the equatorial Atlantic[J]. Science, 1990, 249:766-769.

    Google Scholar

    [47] Droxler A, Farrell J. Marine isotope stage 11(MIS11):New insights for a warm future[J]. Global and Planetary Change, 2000, 24:1-5.

    Google Scholar

    [48] Rohling E, Fenton M, Jorissen F, et al. Magnitudes of sea-level lowstands of the past 500,000 yr[J], Nature, 1998, 394:162-165.

    Google Scholar

    [49] Jansen J, Kuijpers A, Troelstra S. A mid-Brunhes climatic event:Long-term changes in global atmosphere and ocean circulation[J]. Science, 1986, 232:619-622.

    Google Scholar

    [50] Bollmann J, Baumann K, Thierstein H. Global dominance of Gephyrocapsa coccoliths in the late Pleistocene:Selective dissolution, evolution, or global environmental change[J]. Paleoceanography, 1998, 13(5):517-529.

    Google Scholar

    [51] Rickaby R, Bard E, Sonzogni C, et al. Coccolith chemistry reveals secular variations in the global ocean carbon cycle[J]. Earth and Planetary Science Letters, 2007, 253:83-95.

    Google Scholar

    [52] 刘传联, 张拭颖, 金海燕,等. 暖池区1.53Ma以来上层海水变化的颗石藻证据[J]. 同济大学学报(自然科学版), 2005, 33(9

    Google Scholar

    ):1172-1176.[LIU Chuanlian, ZHANG Shiyin, JIN Haiyan, et al.Coccolith Evidence of Upper Ocean Water Variations for Past 1.53 Ma in Western Pacific Warm Pool[J]. Journal of Tongji University (Natural Science), 2005, 33(9):1172-1176.]

    Google Scholar

    [53] 刘传联, 成鑫荣, 王汝建,等. 西太平洋暖池区第四纪钙质超微化石氧碳同位素特征意义[J]. 地球科学-中国地质大学学报, 2005, 30(5):559-564.

    Google Scholar

    [LIU Chuanlian, CHENG Xinrong, WANG Rujian, et al. Oxygen and carbon isotope records of Quaternary calcareous nannofossils from the western Pacific warm pool and their palaeoceanographical significance[J]. Earth Science-Journal of China University of Geosciences, 2005, 30(5):559-564.]

    Google Scholar

    [54] 刘传联, 成鑫荣. 从超微化石看南沙海区近二百万年海水上层结构的变化[J]. 中国科学, 2001, 31(10):834-839.

    Google Scholar

    [LIU Chuanlian, CHENG Xinrong. Coccolith evidence for Quaternary nutricline variations in the southern South China Sea[J]. Science in China, 2001, 31(10):834-839.]

    Google Scholar

    [55] 刘传联, 成鑫荣, 祝幼华,等. 南海南部近百万年来钙质超微化石氧、碳同位素记录[J]. 科学通报, 2002, 47(5):330-335.

    Google Scholar

    [LIU Chuanlian, CHENG Xinrong, ZHU Youhua, et al.Oxygen and carbon isotope records of calcareous nannofossils from the South China Sea in recent 1Ma[J]. Chinese Science Bulletin, 2002, 47(5):330-335.]

    Google Scholar

    [56] 苏翔, 刘传联, 李建如. 越南岸外上升流区45万年来上层海水变化的颗石藻证据[J]. 海洋地质与第四纪地质[J], 2007, 27(2

    Google Scholar

    ):71-76.[SU Xiang, LIU Chuanlian, LI Jianru. Coccolith evidence for variations in upper ocean water in upwelling area off the coast of Vietnam for the past 450000 years[J]. Mar. Geology & Quat. Geology, 2007, 27(2):71-76.]

    Google Scholar

    [57] Raymo M. The timing of major climate terminations[J]. Paleoceanography, 1997, 12:577-585.

    Google Scholar

    [58] Berger W, Jansen E. Mid-Pleistocene climate shift-The Nansen Connection[A]//The Polar Oceans and Their Role in Shaping the Global Environment[C]. Geophys. Monograph, 1994, 84:295-311.

    Google Scholar

    [59] Hodell D. Late Pleistocene paleoceanography of the South Atlantic sector of the Southern Ocean:ocean drilling program hole 704A[J]. Paleoceanography, 1993, 8:47-67.

    Google Scholar

    [60] Peterson L, Prell W. Carbonate preservation and rates of climatic change:an 800 kyr record from Indian Ocean[A]//The Carbon Cycle and Atmospheric CO2:Natural Variations Archaen To Present[C]. Geophys. Monogr. Ser., 1985, 32:251-269.

    Google Scholar

    [61] Lea D. A trace metal perspective on the evolution of Antarctic circumpolar deep water chemistry[J]. Paleoceanography, 1995, 10:733-747.

    Google Scholar

    [62] Archer D. Equatorial Pacific calcite preservation cycles:production or dissolution[J]. Paleoceanography, 1991, 6:561-571.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(819) PDF downloads(1) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint