[1] |
Yayanos A A. Microbiology to 10500 meters in the deep-sea[J]. Annual Review of Microbiology, 1995, 49:777-805.
Google Scholar
|
[2] |
Deming J W. Deep ocean environmental biotechnology[J].Current Opinion in Biotechnology, 1998, 9:283-287.
Google Scholar
|
[3] |
Vetriani C, Jannasch H W, MacGregor B J, et al. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments[J]. Applied and Environmental Microbiology, 1999, 65:4375-4384.
Google Scholar
|
[4] |
Jørgensen B B, Boetius A. Feast and famine-microbial life in the deep-sea bed[J]. Nature Reviews Microbiology, 2007, 5:770-781.
Google Scholar
|
[5] |
Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galápagos Rift[J]. Science, 1979, 203:1073-1083.
Google Scholar
|
[6] |
Corliss J B, Baross J A, Hoffman S E. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth[J]. Oceanologica Acta,1981,suppl:59-69.
Google Scholar
|
[7] |
Baross J A, Hoffman S E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life[J]. Origins of Life and Evolution of Biospheres, 1985, 15:327-345.
Google Scholar
|
[8] |
Martin W, Baross J, Kelley D, et al. Hydrothermal vents and the origin of life[J]. Nature Reviews Microbiology, 2008, 6:805-814.
Google Scholar
|
[9] |
Johnson K S, Childress J J, Hessler R R, et al. Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center[J]. Deep-Sea Research, 1988, 35:1723-1744.
Google Scholar
|
[10] |
Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24:191-224.
Google Scholar
|
[11] |
Cox J S, Smith D S, Warren L A, et al. Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding[J]. Environmental Science & Technology, 1999, 33:4514-4521.
Google Scholar
|
[12] |
Martinez R E, Smith D S, Kulczycki E, et al. Determination of intrinsic bacterial surface acidity constants using a Donnan shell model and a continuous pKa distribution method[J]. Journal of Colloid and Interface Science, 2002, 253:130-139.
Google Scholar
|
[13] |
Yee N, Fowle D A, Ferris F G. A Donnan potential model for metal sorption onto Bacillus subtilis[J]. Geochimica et Cosmochimica Acta, 2004, 68:3657-3664.
Google Scholar
|
[14] |
Fortin D, Langley S. Formation and occurrence of biogenic iron-rich minerals[J]. Earth-Science Reviews, 2005, 72:1-19.
Google Scholar
|
[15] |
Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron:Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4:752-764.
Google Scholar
|
[16] |
Alt J C. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific[J]. Marine Geology, 1988, 81:227-239.
Google Scholar
|
[17] |
Juniper S K, Fouquet Y. Filamentous iron-silica deposits from modern and ancient hydrothermal site[J]. Canadian Mineralogist, 1988, 26:859-869.
Google Scholar
|
[18] |
Emerson D, Moyer C L. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition[J]. Applied and Environmental Microbiology, 2002, 68:3085-3093.
Google Scholar
|
[19] |
Kennedy C B, Scott S D, Ferris F G. Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, Northeast Pacific Ocean[J]. Geomicrobiology Journal, 2003, 20:199-214.
Google Scholar
|
[20] |
Kennedy C B, Scott S D, Ferris F G. Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, north-east Pacific Ocean[J]. FEMS Microbiology Ecology, 2003, 43:247-254.
Google Scholar
|
[21] |
Langley S, Igric P, Takahashi Y, et al. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean[J]. Geobiology, 2009, 7:35-49.
Google Scholar
|
[22] |
Chan C S, Fakra S C, Emerson D, et al. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth:implications for biosignature formation[J]. The ISME Journal, 2011,5:717-727.
Google Scholar
|
[23] |
Forget N L, Murdock S A, Juniper S K. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes[J]. Geobiology, 2010, 8:417-432.
Google Scholar
|
[24] |
Rassa A C, McAllister S M, Safran S A. Zeta-Proteobacteria dominate the colonization and formation of microbial mats in low-temperature hydrothermal vents at Loihi Seamount, Hawaii[J]. Geomicrobiology Journal, 2009, 26:623-638.
Google Scholar
|
[25] |
Emerson D, Rentz J A, Lilburn T G, et al. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities[J]. PLOS ONE,2007, 2(8):e667. doi:10.1371/journal.pone.0000667.
Google Scholar
|
[26] |
Emerson D. Microbial oxidation of Fe(Ⅱ) and Mn(Ⅱ) at circumneutral pH, in Environmental Microbe Metal Interactions[M].(ed. D.R. Lovely), ASM Press, Washington DC, 2000:31-52.
Google Scholar
|
[27] |
Kasama T, Murakami T. The effect of microorganisms on Fe precipitation rates at neutral pH[J]. Chemical Geology, 2001,180:117-128.
Google Scholar
|
[28] |
Slack J F, Grenne T, Bekker A, et al. Suboxic deep seawater in the late Paleoproterozoic:evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA[J]. Earth and Planetary Science Letters, 2007, 255:243-256.
Google Scholar
|
[29] |
Boyd T D, Scott S D. Two-XRD-line ferrihydrite and Fe-Si-Mn oxyhydroxide mineralization from Franklin Seamount, western Woodlark Basin, Papua New Guinea[J]. Canadian Mineralogist, 1999, 37:973-990.
Google Scholar
|
[30] |
Zhao J, Huggins F E, Feng Z, et al. Ferrihydrite:Surface structure and its effects on phase transformation[J]. Clays and Clay Minerals, 1994, 42:737-746.
Google Scholar
|
[31] |
Cornell R M, Schwertmann U. The Iron Oxides:Properties, Reactions, Occurrences and Uses[M]. Berlin:Wiley-VCH, 2003.
Google Scholar
|
[32] |
Dekov V M, Kamenov G D, Savelli C, et al. Metalliferous sediments from Eolo Seamount (Tyrrhenian Sea):Hydrothermal deposition and re-deposition in a zone of oxygen depletion[J]. Chemical Geology, 2009, 264:347-363.
Google Scholar
|
[33] |
German C R, von Damm K L. Hydothermal Processes[C]//Treatise on Geochemistry, Elsevier Science Ltd, 2003, 6:181-222.
Google Scholar
|
[34] |
Farquhar J, Bao H, Thiemens M. Atmospheric influence of Earth's earliest sulfur cycle[J]. Science, 2000, 289:756-758.
Google Scholar
|
[35] |
Bekker A, Holland H D, Wang P L, et al. Dating the rise of atmospheric oxygen[J]. Nature, 2004, 427:117-120.
Google Scholar
|
[36] |
Templeton A S, Hubert S, Tebo B M. Diverse Mn(Ⅱ)-Oxidizing Bacteria Isolated from Submarine Basalts at Loihi Seamount[J]. Geomicrobiology Journal, 2005, 22:127-139.
Google Scholar
|
[37] |
Santelli C M. Life in the deep sea[J]. Nature Geosciences, 2009, 2:825-826.
Google Scholar
|
[38] |
Juniper S K, Tebo B M. Microbe-metal interactions and mineral deposition at hydrothermal vents[C]//The Microbiology of Deep-Sea Hydrothermal Vents. New York:CRC Press, 1995:219-253.
Google Scholar
|
[39] |
Dick G J, Lee Y E, Tebo B M. Manganese(Ⅱ)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes[J]. Applied and Environmental Microbiology, 2006, 72:3184-3190.
Google Scholar
|
[40] |
Templeton A S, Knowles E J, Eldridge D L, et al. A seafloor microbial biome hosted within incipient ferromanganese crusts[J]. Nature Geoscience, 2009, 2:872-876.
Google Scholar
|
[41] |
Hastings D, Emerson S. Oxidation of manganese by spores of a marine Bacillus:kinetic and thermodynamic considerations[J]. Geochimica et Cosmochimica Acta, 1986, 50:1819-1824.
Google Scholar
|
[42] |
Nealson K, Tebo B M, Rosson R A. Occurrence and mechanisms of microbial oxidation of manganese[J]. Advances in Applied Microbiology, 1988, 33:279-318.
Google Scholar
|
[43] |
Tebo B M, Bargar J R, Clement B G, et al. Biogenic manganese oxides:Properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences, 2004, 32:287-328.
Google Scholar
|
[44] |
Connell L, Barrett A, Templeton A, et al. Fungal diversity associated with an active deep sea volcano:Vailulu'u Seamount, Samoa[J]. Geomicrobiology Journal, 2009, 26:597-605.
Google Scholar
|
[45] |
Dick G J, Clement B G, Webb S M, et al. Enzymatic microbial Mn(Ⅱ) oxidation and Mn biooxide production in the Guaymas Basin deep-sea hydrothermal plume[J]. Geochimica et Cosmochimica Acta, 2009, 73:6157-6530.
Google Scholar
|
[46] |
Ehrlich H L. Geomicrobiology,2nd edition[M]. New York:Marcel Dekker, 1990, 646.
Google Scholar
|
[47] |
Feng X H, Zhu M, Ginder-Vogel M, et al. Formation of nano-crystalline todorokite from biogenic Mn oxides[J]. Geochimica et Cosmochimica Acta, 2010, 74:3232-3245.
Google Scholar
|
[48] |
Villalobos M, Toner B, Bargar J, et al. Characterization of the manganese oxide produced by pseudomonas putida strain mnb1[J]. Geochimica et Cosmochimica Acta, 2003, 67:2649-2662.
Google Scholar
|
[49] |
Webb S M, Tebo B M, Bargat J R. Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp strain sg-1[J]. American Mineralogist, 2005, 90:1342-1357.
Google Scholar
|
[50] |
Nelson Y M, Lion L W, Ghiorse W C, et al. Production of biogenic Mn oxides by leprothrix discophora ss-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics[J]. Applied and Environmental Microbiology, 1999, 65:175-180.
Google Scholar
|
[51] |
Kim H S, Pasten P A, Gaillard J F, et al. Nanocrystalline todorokite-like manganese oxide produced by bacterial catalysis[C]. Abstracts of the American Chemical Society, 2004, 227, U1213-U1213.
Google Scholar
|
[52] |
Villalobos M, Bargar J, Sposito G. Trace metal retention on biogenic manganese oxide nanoparticles[J]. Elements, 2005, 1:223-226.
Google Scholar
|
[53] |
Ueshima M, Tazaki K. Possible role of microbial polysaccharides in nontronite formation[J]. Clay and Clay Minerals, 2001, 49:292-299.
Google Scholar
|
[54] |
Fortin D, Ferris F G, Scott S D. Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean[J]. American Mineralogist, 1998, 83:1399-1408.
Google Scholar
|
[55] |
Dekov V M, Kamenov G D, Stummeyer J, et al. Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea)[J]. Chemical Geology, 2007, 245:103-119.
Google Scholar
|
[56] |
Köhler B, Singer A, Stoffers P. Biogenic nontronite frommarine white smoker chimneys[J]. Clays and Clay Minerals, 1994, 42:689-701.
Google Scholar
|
[57] |
Ivarsson M, Lindblom S, Broman C, et al. Fossilized microorganisms associated with zeolite carbonate interfaces in sub-seafloor hydrothermal environments[J]. Geobiology, 2008, 6:155-170.
Google Scholar
|
[58] |
Geptner A, Kristmannsdottir H, Kristjansson J, et al. Biogenic saponite from an active submarine hot spring, Iceland[J]. Clay and Clay Minerals, 2002, 50:174-185.
Google Scholar
|
[59] |
Tazaki K, Fyfe W S. Microbial green marine clay from Izu-Bonin deep-sea sediments (west Pacific)[J]. Chemical Geology, 1992, 102:105-118.
Google Scholar
|
[60] |
Konhauser K O, Schiffman P, Fisher Q J. Microbial mediation of authigenic clays during hydrothermal alteration of basaltic tephra, Kilauea Volcano[J]. Geochemistry, Geophysics, Geosystems, 2002, 3, 1075, doi:10.1029/2002GC000317.
Google Scholar
|
[61] |
Guidry S A, Chafetz H S. Siliceous shrubs in hot springs from Yellowstone National Park, Wyoming, U.S.A.[J]. Canadian Journal of Earth Sciences, 2003, 40:1571-1583.
Google Scholar
|
[62] |
Konhauser K O, Phoenix V R, Bottrell S H, et al. Microbial-silica interactions in Icelandic hot spring sinter:possible analogues for some Precambrian siliceous stromatolites[J]. Sedimentology, 2001, 48:415-433.
Google Scholar
|
[63] |
Jones B, De Ronde C E J, Renaut R W, et al. Siliceous sublacustrine spring deposits around hydrothermal vents in Lake Taupo, New Zealand[J]. Journal of the Geological Society, 2007, 164:227-242.
Google Scholar
|
[64] |
Stüben D, Eddine Taibi N, McCuthry G M, et al. Growth history of a hydrothermal silica chimney from the Mariana backarc spreading centre (southwest Pacific, 18°13'N)[J]. Chemical Geology, 1994, 113:273-296.
Google Scholar
|
[65] |
Al-Hanbali H S, Sowerby S J, Holm N G. Biogenicity of silicified microbes from a hydrothermal system:relevance to the search for evidence of life on earth and other planets[J]. Earth and Planetary Science Letters, 2001, 191:213-218.
Google Scholar
|
[66] |
Fein J B, Scott S, Rivera N. The effect of Fe on Si adsorption by Bacillus subtilis cell walls:insights into non-metabolic bacterial precipitation of silicate minerals[J]. Chemical Geology, 2002, 182:265-273.
Google Scholar
|
[67] |
Orange F, Westall F, Disnar J -R, et al. Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii:applications in the search for evidence of life in early earth and extraterrestrial rocks[J]. Geobiology, 2009, 7:403-418.
Google Scholar
|
[68] |
Westall F, de Vries S T, Nijman W, et al. The 3.466 Ga "Kitty's Gap Chert", an early Archean microbial ecosystem[J]. Geological Society of America Special Paper, 2006, 405:105-131.
Google Scholar
|
[69] |
Sievert S M, Hügler M, Taylor C D, et al. Sulfur Oxidation at Deep-Sea Hydrothermal Vents[C]//Microbial Sulfur Metabolism. Heidelberg:Springer, 2008:238-258.
Google Scholar
|
[70] |
McCollom T, Shock E L. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1997, 61:4375-4391.
Google Scholar
|
[71] |
Taylor C D, Wirsen C O. Microbiology and ecology of filamentous sulfur formation[J]. Science, 1997, 277:1483-1485.
Google Scholar
|
[72] |
Taylor C D, Wirsen C O, Gaill F. Rapid microbial production of filamentous sulfur mats at hydrothermal vents[J]. Applied and Environmental Microbiology, 1999, 65:2253-2255.
Google Scholar
|
[73] |
Nelson D, Haymon R M, Lilley M, et al. Rapid growth of unusual hydrothermal bacteria observed at new vents during ADVENTURE dive program to the EPR crest at 9°45'-52'N[J]. EOS Trans Am Geophys Union, 1991, 72:481.
Google Scholar
|
[74] |
Embley R W Jr, Chadwick W W, Jonasson I R, et al. Initial results of the rapid response to the 1993 CoAxial event:relationships between hydrothermal and volcanic processes[J]. Geophysical Research Letters, 1995, 22:143-146.
Google Scholar
|
[75] |
Embley R W, Chadwick W W Jr, Perfit M R, et al. Recent eruptions on the CoAxial segment of the Juan de Fuca ridge:implications for mid-ocean ridge accretion processes[J]. Jouranl of Geophysical Research, 2000, 105:16501-16526.
Google Scholar
|
[76] |
Moyer C L, Dobbs F C, Karl D M. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi seamount, Hawaii[J]. Applied and Environmental Microbiology, 1995, 61:1555-1562.
Google Scholar
|
[77] |
Foriel J, Philippot P, Susini J, et al. High-resolution imaging of sulfur oxidation states, trace elements, and organic molecules distribution in individual microfossils and contemporary microbial filaments[J]. Geochimica et Cosmochimica Acta, 2004, 68:1561-1569.
Google Scholar
|
[78] |
Zierenberg R A, Schiffman P. Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge[J]. Nature, 1990, 348:155-157.
Google Scholar
|
[79] |
Eberhard C, Wirsen C O, Jannasch H W. Oxidation of polymetal sulfides by chemolithoautotrophic bacteria from deep-sea hydrothermal vents[J]. Geomicrobiology Journal, 1995, 13:145-164.
Google Scholar
|
[80] |
McCollom, T M. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes[J]. Deep-sea Research I, 2000,47:85-101.
Google Scholar
|
[81] |
Verati C, de Donato P, Prieur D, et al. Evidence of bacterial activity from micrometer-scale layer analyses of black-smoker sulfide structures (Pito Seamount Site, Easter microplate)[J]. Chemical Geology, 1999, 158:257-269.
Google Scholar
|
[82] |
Scott S D. Submarine hydrothermal systems and deposits[C]//Geochemistry of Hydrothermal Ore Deposits. New York:John Wiley, 1997, 797-875.
Google Scholar
|
[83] |
Wirsen C O, Jannasch H W, Molyneaux S J. Chemosynthetic microbial activity at Mid-Atlantic Ridge Hydrothermal vent sites[J]. Journal of Geophysical Research, 1993, B98:9693-9703.
Google Scholar
|
[84] |
Edwards K J, McCollom T M, Konishi H, et al. Seafloor bioalteration of sulfide minerals:Results from in situ incubation studies[J]. Geochimica et Cosmochimica Acta, 2003, 67:2843-2856.
Google Scholar
|
[85] |
Nisbet E G, Fowler C M R, 1999. Archaean metabolic evolution of microbial mats[J]. Proceedings of the Royal Society of London Series B, 266:2375-2382.
Google Scholar
|
[86] |
Nisbet E G, Fowler C M R. Some liked it hot[J]. Nature, 1996, 382:404-405.
Google Scholar
|
[87] |
Nisbet E G. The realms of Archaean life[J]. Nature, 2000, 405:625-626.
Google Scholar
|
[88] |
Westall F, Southam G. The early record of life[J]. Archean Geodynamics and Environments, 2006, 164:283-304.
Google Scholar
|
[89] |
Rasmussen B. Filamentous microfossils in a 3235-million-year-old volcanogenic massive sulphide deposit[J].Nature, 2000, 405:676-679.
Google Scholar
|
[90] |
Fisk M R, Giovanoni S J, Thorseth I H. Alteration of oceanic volcanic glass:textural evidence of microbial activity[J]. Science, 1998, 281:978-980.
Google Scholar
|
[91] |
Hofmann B A, Farmer J D, Von Blanckenburg F, et al. Subsurface filamentous Fabrics:an evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology[J]. Astrobiology, 2008, 8:87-117.
Google Scholar
|
[92] |
Kyle J E, Schroeder P A, Wiegel J. Microbial Silicification in Sinters from Two Terrestrial Hot springs in the Uzon Caldera, Kamchatka, Russia[J]. Geomicrobiology Journal, 2007, 24:627-641.
Google Scholar
|