2011 Vol. 31, No. 3
Article Contents

SUN Zhilei, HE Yongjun, LI Jun, QI Chongyang, LI Jiwei, LIU Weiliang. THE RECENT PROGRESS OF SUBMARINE HYDROTHERMAL BIOMINERALIZATION[J]. Marine Geology & Quaternary Geology, 2011, 31(3): 123-132. doi: 10.3724/SP.J.1140.2011.03123
Citation: SUN Zhilei, HE Yongjun, LI Jun, QI Chongyang, LI Jiwei, LIU Weiliang. THE RECENT PROGRESS OF SUBMARINE HYDROTHERMAL BIOMINERALIZATION[J]. Marine Geology & Quaternary Geology, 2011, 31(3): 123-132. doi: 10.3724/SP.J.1140.2011.03123

THE RECENT PROGRESS OF SUBMARINE HYDROTHERMAL BIOMINERALIZATION

  • The study of biomineralization in modern hydrothermal vent system is one of the keys to the research and the exploring of the early history of the earth, the evolution of life, the subsurface biosphere and the study of terrestrial planets (such as the Mar). It has in the past decade become one of the focuses of geobiological research with the application of the microelectronic technology and molecular biology technology. Available information indicates that microorganisms play a critical role in the formation of oxyhydroxides (for instance, Fe, Mn, S or Si oxyhydroxide) and silicates in the hydrothermal systems of the earth. Furthermore, the biomineralization of modern chemolithoautotrophic microorganisms has been identified to be the nexus of the interaction between the geoshpere and the biosphere and one of the forces to push forward the in-depth study of bioscience and geosciences In this paper, we summarized the ongoing research of hydrothermal bionmieralzaiton, including the biogenic minerals, the microbial biodiversity and the interactions between the minerals and microorganisms. In the foreseeable future, the research of hydrothermal biomineralization will inspire both the development of geosciences and biosciences and deepen our understanding of the earth history, life evolution and even astrobiology.
  • 加载中
  • [1] Yayanos A A. Microbiology to 10500 meters in the deep-sea[J]. Annual Review of Microbiology, 1995, 49:777-805.

    Google Scholar

    [2] Deming J W. Deep ocean environmental biotechnology[J].Current Opinion in Biotechnology, 1998, 9:283-287.

    Google Scholar

    [3] Vetriani C, Jannasch H W, MacGregor B J, et al. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments[J]. Applied and Environmental Microbiology, 1999, 65:4375-4384.

    Google Scholar

    [4] Jørgensen B B, Boetius A. Feast and famine-microbial life in the deep-sea bed[J]. Nature Reviews Microbiology, 2007, 5:770-781.

    Google Scholar

    [5] Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galápagos Rift[J]. Science, 1979, 203:1073-1083.

    Google Scholar

    [6] Corliss J B, Baross J A, Hoffman S E. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth[J]. Oceanologica Acta,1981,suppl:59-69.

    Google Scholar

    [7] Baross J A, Hoffman S E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life[J]. Origins of Life and Evolution of Biospheres, 1985, 15:327-345.

    Google Scholar

    [8] Martin W, Baross J, Kelley D, et al. Hydrothermal vents and the origin of life[J]. Nature Reviews Microbiology, 2008, 6:805-814.

    Google Scholar

    [9] Johnson K S, Childress J J, Hessler R R, et al. Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center[J]. Deep-Sea Research, 1988, 35:1723-1744.

    Google Scholar

    [10] Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24:191-224.

    Google Scholar

    [11] Cox J S, Smith D S, Warren L A, et al. Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding[J]. Environmental Science & Technology, 1999, 33:4514-4521.

    Google Scholar

    [12] Martinez R E, Smith D S, Kulczycki E, et al. Determination of intrinsic bacterial surface acidity constants using a Donnan shell model and a continuous pKa distribution method[J]. Journal of Colloid and Interface Science, 2002, 253:130-139.

    Google Scholar

    [13] Yee N, Fowle D A, Ferris F G. A Donnan potential model for metal sorption onto Bacillus subtilis[J]. Geochimica et Cosmochimica Acta, 2004, 68:3657-3664.

    Google Scholar

    [14] Fortin D, Langley S. Formation and occurrence of biogenic iron-rich minerals[J]. Earth-Science Reviews, 2005, 72:1-19.

    Google Scholar

    [15] Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron:Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4:752-764.

    Google Scholar

    [16] Alt J C. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific[J]. Marine Geology, 1988, 81:227-239.

    Google Scholar

    [17] Juniper S K, Fouquet Y. Filamentous iron-silica deposits from modern and ancient hydrothermal site[J]. Canadian Mineralogist, 1988, 26:859-869.

    Google Scholar

    [18] Emerson D, Moyer C L. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition[J]. Applied and Environmental Microbiology, 2002, 68:3085-3093.

    Google Scholar

    [19] Kennedy C B, Scott S D, Ferris F G. Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, Northeast Pacific Ocean[J]. Geomicrobiology Journal, 2003, 20:199-214.

    Google Scholar

    [20] Kennedy C B, Scott S D, Ferris F G. Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, north-east Pacific Ocean[J]. FEMS Microbiology Ecology, 2003, 43:247-254.

    Google Scholar

    [21] Langley S, Igric P, Takahashi Y, et al. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean[J]. Geobiology, 2009, 7:35-49.

    Google Scholar

    [22] Chan C S, Fakra S C, Emerson D, et al. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth:implications for biosignature formation[J]. The ISME Journal, 2011,5:717-727.

    Google Scholar

    [23] Forget N L, Murdock S A, Juniper S K. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes[J]. Geobiology, 2010, 8:417-432.

    Google Scholar

    [24] Rassa A C, McAllister S M, Safran S A. Zeta-Proteobacteria dominate the colonization and formation of microbial mats in low-temperature hydrothermal vents at Loihi Seamount, Hawaii[J]. Geomicrobiology Journal, 2009, 26:623-638.

    Google Scholar

    [25] Emerson D, Rentz J A, Lilburn T G, et al. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities[J]. PLOS ONE,2007, 2(8):e667. doi:10.1371/journal.pone.0000667.

    Google Scholar

    [26] Emerson D. Microbial oxidation of Fe(Ⅱ) and Mn(Ⅱ) at circumneutral pH, in Environmental Microbe Metal Interactions[M].(ed. D.R. Lovely), ASM Press, Washington DC, 2000:31-52.

    Google Scholar

    [27] Kasama T, Murakami T. The effect of microorganisms on Fe precipitation rates at neutral pH[J]. Chemical Geology, 2001,180:117-128.

    Google Scholar

    [28] Slack J F, Grenne T, Bekker A, et al. Suboxic deep seawater in the late Paleoproterozoic:evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA[J]. Earth and Planetary Science Letters, 2007, 255:243-256.

    Google Scholar

    [29] Boyd T D, Scott S D. Two-XRD-line ferrihydrite and Fe-Si-Mn oxyhydroxide mineralization from Franklin Seamount, western Woodlark Basin, Papua New Guinea[J]. Canadian Mineralogist, 1999, 37:973-990.

    Google Scholar

    [30] Zhao J, Huggins F E, Feng Z, et al. Ferrihydrite:Surface structure and its effects on phase transformation[J]. Clays and Clay Minerals, 1994, 42:737-746.

    Google Scholar

    [31] Cornell R M, Schwertmann U. The Iron Oxides:Properties, Reactions, Occurrences and Uses[M]. Berlin:Wiley-VCH, 2003.

    Google Scholar

    [32] Dekov V M, Kamenov G D, Savelli C, et al. Metalliferous sediments from Eolo Seamount (Tyrrhenian Sea):Hydrothermal deposition and re-deposition in a zone of oxygen depletion[J]. Chemical Geology, 2009, 264:347-363.

    Google Scholar

    [33] German C R, von Damm K L. Hydothermal Processes[C]//Treatise on Geochemistry, Elsevier Science Ltd, 2003, 6:181-222.

    Google Scholar

    [34] Farquhar J, Bao H, Thiemens M. Atmospheric influence of Earth's earliest sulfur cycle[J]. Science, 2000, 289:756-758.

    Google Scholar

    [35] Bekker A, Holland H D, Wang P L, et al. Dating the rise of atmospheric oxygen[J]. Nature, 2004, 427:117-120.

    Google Scholar

    [36] Templeton A S, Hubert S, Tebo B M. Diverse Mn(Ⅱ)-Oxidizing Bacteria Isolated from Submarine Basalts at Loihi Seamount[J]. Geomicrobiology Journal, 2005, 22:127-139.

    Google Scholar

    [37] Santelli C M. Life in the deep sea[J]. Nature Geosciences, 2009, 2:825-826.

    Google Scholar

    [38] Juniper S K, Tebo B M. Microbe-metal interactions and mineral deposition at hydrothermal vents[C]//The Microbiology of Deep-Sea Hydrothermal Vents. New York:CRC Press, 1995:219-253.

    Google Scholar

    [39] Dick G J, Lee Y E, Tebo B M. Manganese(Ⅱ)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes[J]. Applied and Environmental Microbiology, 2006, 72:3184-3190.

    Google Scholar

    [40] Templeton A S, Knowles E J, Eldridge D L, et al. A seafloor microbial biome hosted within incipient ferromanganese crusts[J]. Nature Geoscience, 2009, 2:872-876.

    Google Scholar

    [41] Hastings D, Emerson S. Oxidation of manganese by spores of a marine Bacillus:kinetic and thermodynamic considerations[J]. Geochimica et Cosmochimica Acta, 1986, 50:1819-1824.

    Google Scholar

    [42] Nealson K, Tebo B M, Rosson R A. Occurrence and mechanisms of microbial oxidation of manganese[J]. Advances in Applied Microbiology, 1988, 33:279-318.

    Google Scholar

    [43] Tebo B M, Bargar J R, Clement B G, et al. Biogenic manganese oxides:Properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences, 2004, 32:287-328.

    Google Scholar

    [44] Connell L, Barrett A, Templeton A, et al. Fungal diversity associated with an active deep sea volcano:Vailulu'u Seamount, Samoa[J]. Geomicrobiology Journal, 2009, 26:597-605.

    Google Scholar

    [45] Dick G J, Clement B G, Webb S M, et al. Enzymatic microbial Mn(Ⅱ) oxidation and Mn biooxide production in the Guaymas Basin deep-sea hydrothermal plume[J]. Geochimica et Cosmochimica Acta, 2009, 73:6157-6530.

    Google Scholar

    [46] Ehrlich H L. Geomicrobiology,2nd edition[M]. New York:Marcel Dekker, 1990, 646.

    Google Scholar

    [47] Feng X H, Zhu M, Ginder-Vogel M, et al. Formation of nano-crystalline todorokite from biogenic Mn oxides[J]. Geochimica et Cosmochimica Acta, 2010, 74:3232-3245.

    Google Scholar

    [48] Villalobos M, Toner B, Bargar J, et al. Characterization of the manganese oxide produced by pseudomonas putida strain mnb1[J]. Geochimica et Cosmochimica Acta, 2003, 67:2649-2662.

    Google Scholar

    [49] Webb S M, Tebo B M, Bargat J R. Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp strain sg-1[J]. American Mineralogist, 2005, 90:1342-1357.

    Google Scholar

    [50] Nelson Y M, Lion L W, Ghiorse W C, et al. Production of biogenic Mn oxides by leprothrix discophora ss-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics[J]. Applied and Environmental Microbiology, 1999, 65:175-180.

    Google Scholar

    [51] Kim H S, Pasten P A, Gaillard J F, et al. Nanocrystalline todorokite-like manganese oxide produced by bacterial catalysis[C]. Abstracts of the American Chemical Society, 2004, 227, U1213-U1213.

    Google Scholar

    [52] Villalobos M, Bargar J, Sposito G. Trace metal retention on biogenic manganese oxide nanoparticles[J]. Elements, 2005, 1:223-226.

    Google Scholar

    [53] Ueshima M, Tazaki K. Possible role of microbial polysaccharides in nontronite formation[J]. Clay and Clay Minerals, 2001, 49:292-299.

    Google Scholar

    [54] Fortin D, Ferris F G, Scott S D. Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean[J]. American Mineralogist, 1998, 83:1399-1408.

    Google Scholar

    [55] Dekov V M, Kamenov G D, Stummeyer J, et al. Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea)[J]. Chemical Geology, 2007, 245:103-119.

    Google Scholar

    [56] Köhler B, Singer A, Stoffers P. Biogenic nontronite frommarine white smoker chimneys[J]. Clays and Clay Minerals, 1994, 42:689-701.

    Google Scholar

    [57] Ivarsson M, Lindblom S, Broman C, et al. Fossilized microorganisms associated with zeolite carbonate interfaces in sub-seafloor hydrothermal environments[J]. Geobiology, 2008, 6:155-170.

    Google Scholar

    [58] Geptner A, Kristmannsdottir H, Kristjansson J, et al. Biogenic saponite from an active submarine hot spring, Iceland[J]. Clay and Clay Minerals, 2002, 50:174-185.

    Google Scholar

    [59] Tazaki K, Fyfe W S. Microbial green marine clay from Izu-Bonin deep-sea sediments (west Pacific)[J]. Chemical Geology, 1992, 102:105-118.

    Google Scholar

    [60] Konhauser K O, Schiffman P, Fisher Q J. Microbial mediation of authigenic clays during hydrothermal alteration of basaltic tephra, Kilauea Volcano[J]. Geochemistry, Geophysics, Geosystems, 2002, 3, 1075, doi:10.1029/2002GC000317.

    Google Scholar

    [61] Guidry S A, Chafetz H S. Siliceous shrubs in hot springs from Yellowstone National Park, Wyoming, U.S.A.[J]. Canadian Journal of Earth Sciences, 2003, 40:1571-1583.

    Google Scholar

    [62] Konhauser K O, Phoenix V R, Bottrell S H, et al. Microbial-silica interactions in Icelandic hot spring sinter:possible analogues for some Precambrian siliceous stromatolites[J]. Sedimentology, 2001, 48:415-433.

    Google Scholar

    [63] Jones B, De Ronde C E J, Renaut R W, et al. Siliceous sublacustrine spring deposits around hydrothermal vents in Lake Taupo, New Zealand[J]. Journal of the Geological Society, 2007, 164:227-242.

    Google Scholar

    [64] Stüben D, Eddine Taibi N, McCuthry G M, et al. Growth history of a hydrothermal silica chimney from the Mariana backarc spreading centre (southwest Pacific, 18°13'N)[J]. Chemical Geology, 1994, 113:273-296.

    Google Scholar

    [65] Al-Hanbali H S, Sowerby S J, Holm N G. Biogenicity of silicified microbes from a hydrothermal system:relevance to the search for evidence of life on earth and other planets[J]. Earth and Planetary Science Letters, 2001, 191:213-218.

    Google Scholar

    [66] Fein J B, Scott S, Rivera N. The effect of Fe on Si adsorption by Bacillus subtilis cell walls:insights into non-metabolic bacterial precipitation of silicate minerals[J]. Chemical Geology, 2002, 182:265-273.

    Google Scholar

    [67] Orange F, Westall F, Disnar J -R, et al. Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii:applications in the search for evidence of life in early earth and extraterrestrial rocks[J]. Geobiology, 2009, 7:403-418.

    Google Scholar

    [68] Westall F, de Vries S T, Nijman W, et al. The 3.466 Ga "Kitty's Gap Chert", an early Archean microbial ecosystem[J]. Geological Society of America Special Paper, 2006, 405:105-131.

    Google Scholar

    [69] Sievert S M, Hügler M, Taylor C D, et al. Sulfur Oxidation at Deep-Sea Hydrothermal Vents[C]//Microbial Sulfur Metabolism. Heidelberg:Springer, 2008:238-258.

    Google Scholar

    [70] McCollom T, Shock E L. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1997, 61:4375-4391.

    Google Scholar

    [71] Taylor C D, Wirsen C O. Microbiology and ecology of filamentous sulfur formation[J]. Science, 1997, 277:1483-1485.

    Google Scholar

    [72] Taylor C D, Wirsen C O, Gaill F. Rapid microbial production of filamentous sulfur mats at hydrothermal vents[J]. Applied and Environmental Microbiology, 1999, 65:2253-2255.

    Google Scholar

    [73] Nelson D, Haymon R M, Lilley M, et al. Rapid growth of unusual hydrothermal bacteria observed at new vents during ADVENTURE dive program to the EPR crest at 9°45'-52'N[J]. EOS Trans Am Geophys Union, 1991, 72:481.

    Google Scholar

    [74] Embley R W Jr, Chadwick W W, Jonasson I R, et al. Initial results of the rapid response to the 1993 CoAxial event:relationships between hydrothermal and volcanic processes[J]. Geophysical Research Letters, 1995, 22:143-146.

    Google Scholar

    [75] Embley R W, Chadwick W W Jr, Perfit M R, et al. Recent eruptions on the CoAxial segment of the Juan de Fuca ridge:implications for mid-ocean ridge accretion processes[J]. Jouranl of Geophysical Research, 2000, 105:16501-16526.

    Google Scholar

    [76] Moyer C L, Dobbs F C, Karl D M. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi seamount, Hawaii[J]. Applied and Environmental Microbiology, 1995, 61:1555-1562.

    Google Scholar

    [77] Foriel J, Philippot P, Susini J, et al. High-resolution imaging of sulfur oxidation states, trace elements, and organic molecules distribution in individual microfossils and contemporary microbial filaments[J]. Geochimica et Cosmochimica Acta, 2004, 68:1561-1569.

    Google Scholar

    [78] Zierenberg R A, Schiffman P. Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge[J]. Nature, 1990, 348:155-157.

    Google Scholar

    [79] Eberhard C, Wirsen C O, Jannasch H W. Oxidation of polymetal sulfides by chemolithoautotrophic bacteria from deep-sea hydrothermal vents[J]. Geomicrobiology Journal, 1995, 13:145-164.

    Google Scholar

    [80] McCollom, T M. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes[J]. Deep-sea Research I, 2000,47:85-101.

    Google Scholar

    [81] Verati C, de Donato P, Prieur D, et al. Evidence of bacterial activity from micrometer-scale layer analyses of black-smoker sulfide structures (Pito Seamount Site, Easter microplate)[J]. Chemical Geology, 1999, 158:257-269.

    Google Scholar

    [82] Scott S D. Submarine hydrothermal systems and deposits[C]//Geochemistry of Hydrothermal Ore Deposits. New York:John Wiley, 1997, 797-875.

    Google Scholar

    [83] Wirsen C O, Jannasch H W, Molyneaux S J. Chemosynthetic microbial activity at Mid-Atlantic Ridge Hydrothermal vent sites[J]. Journal of Geophysical Research, 1993, B98:9693-9703.

    Google Scholar

    [84] Edwards K J, McCollom T M, Konishi H, et al. Seafloor bioalteration of sulfide minerals:Results from in situ incubation studies[J]. Geochimica et Cosmochimica Acta, 2003, 67:2843-2856.

    Google Scholar

    [85] Nisbet E G, Fowler C M R, 1999. Archaean metabolic evolution of microbial mats[J]. Proceedings of the Royal Society of London Series B, 266:2375-2382.

    Google Scholar

    [86] Nisbet E G, Fowler C M R. Some liked it hot[J]. Nature, 1996, 382:404-405.

    Google Scholar

    [87] Nisbet E G. The realms of Archaean life[J]. Nature, 2000, 405:625-626.

    Google Scholar

    [88] Westall F, Southam G. The early record of life[J]. Archean Geodynamics and Environments, 2006, 164:283-304.

    Google Scholar

    [89] Rasmussen B. Filamentous microfossils in a 3235-million-year-old volcanogenic massive sulphide deposit[J].Nature, 2000, 405:676-679.

    Google Scholar

    [90] Fisk M R, Giovanoni S J, Thorseth I H. Alteration of oceanic volcanic glass:textural evidence of microbial activity[J]. Science, 1998, 281:978-980.

    Google Scholar

    [91] Hofmann B A, Farmer J D, Von Blanckenburg F, et al. Subsurface filamentous Fabrics:an evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology[J]. Astrobiology, 2008, 8:87-117.

    Google Scholar

    [92] Kyle J E, Schroeder P A, Wiegel J. Microbial Silicification in Sinters from Two Terrestrial Hot springs in the Uzon Caldera, Kamchatka, Russia[J]. Geomicrobiology Journal, 2007, 24:627-641.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1010) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint