2011 Vol. 31, No. 3
Article Contents

JIANG Xiuyang, LI Zhizhong, SHEN Chuanzhou, LI Jinquan. 2100~590 ABP STALAGMITE STABLE ISOTOPE RECORDS FROM TIAN'E CAVE AND THEIR REGIONAL CLIMATE SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2011, 31(3): 117-122. doi: 10.3724/SP.J.1140.2011.03117
Citation: JIANG Xiuyang, LI Zhizhong, SHEN Chuanzhou, LI Jinquan. 2100~590 ABP STALAGMITE STABLE ISOTOPE RECORDS FROM TIAN'E CAVE AND THEIR REGIONAL CLIMATE SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2011, 31(3): 117-122. doi: 10.3724/SP.J.1140.2011.03117

2100~590 ABP STALAGMITE STABLE ISOTOPE RECORDS FROM TIAN'E CAVE AND THEIR REGIONAL CLIMATE SIGNIFICANCE

  • We present in this paper the 230Th-dated stalagmite stable isotope record from Tian'e Cave in Fujian province, Southeast China. This record provides an Asian Monsoon(AM) history during a time interval from 2 100~590 aBP.In the TE2 δ18O record, the long-term decreasing trend correlates well with the Heshang Cave δ18O change, supporting that the Asian Monsoon intensity is controlled by the migration of Inter-tropical Convergence Zone (ITCZ). A comparison between the stalagmite δ18O record and the Total Solar Irradiance record provides strong evidence for solar forcing of East Asian monsoon on centennial to multi-decadal time-scales. An important characteristic of the TE2 isotopic record is an abrupt large shift of the carbon isotopic ratio (4‰), suggesting intensified soil erosion occurred on the overlain soil due to the destruction of the climax vegetation as a result of constant human disturbance.
  • 加载中
  • [1] An Z S, Porter S C, Kutzbach J E, et al. Asynchronous Holocene optimum of the East Asian monsoon[J]. Quaternary Science Reviews, 2000, 19(8):743-762.

    Google Scholar

    [2] He Y, Theakstone W H, Zhang Z L, et al. Asynchronous Holocene climatic change across China[J]. Quaternary Research, 2004, 61:52-63.

    Google Scholar

    [3] Dong J G, Wang Y J, Cheng H, et al. A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China[J]. The Holocene, 2010, 20(2):257-264.

    Google Scholar

    [4] Fleitmann D, Burns S J, Manginic A, et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra)[J]. Quaternary Science Reviews, 2007, 26:170-188.

    Google Scholar

    [5] Hong Y T, Hong B, Lin Q H, et al. Synchronous climate anomalies in the western North Pacific and North Atlantic regions during the last 14000 years[J]. Quaternary Science Reviews, 2009, doi:10.1016/j.quascirev.2008.11.011.

    Google Scholar

    [6] Jiang W Y, Guo Z T, Sun X J, et al. Reconstruction of climate and vegetation changes of Lake Bayanchagan (Inner Mongolia):Holocene variability of the East Asian monsoon[J]. Quaternary Research, 2006, 65:411-420.

    Google Scholar

    [7] Jung S J A, Davies G R, Ganssen G M, et al. Synchronous Holocene sea surface temperature and rainfall variations in the Asian monsoon system[J]. Quaternary Science Reviews, 2004, 23:2207-2218.

    Google Scholar

    [8] Cai Y J, Tan L C, Cheng H, et al. The variation of summer monsoon precipitation in central China since the last deglaciation[J]. Earth and Planetary Science Letters, 2010, 291:21-31.

    Google Scholar

    [9] Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445:74-77.

    Google Scholar

    [10] Tan L C, Cai Y J, Cheng H, et al. Summer monsoon precipitation variations in central China over the past 750 years derived from a high-resolution absolute-dated stalagmite[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280:432-439.

    Google Scholar

    [11] Tan M, Liu T S,Hou J Z, et al. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature[J]. Geophysical Research Letters, 2003,30(12):1617-1620.

    Google Scholar

    [12] Zhang P Z, Cheng H, Edwards R L, et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record[J]. Science, 2008, 322:940-942.

    Google Scholar

    [13] Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266:221-232.

    Google Scholar

    [14] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian Monsoon:links to solar changes and North Atlantic climate[J].Science,2005,308:854-857.

    Google Scholar

    [15] Qian W, Lin X. Regional trends in recent precipitation indices in China[J]. Meteorology and Atmospheric Physics, 2005, 90:193-207.

    Google Scholar

    [16] Steinhilber F, Beer J, Fr hlich C. Total solar irradiance during the Holocene[J]. Geophys Res.Lett., 2009, 36, L19704, doi:10.1029/2009GL040142.

    Google Scholar

    [17] Stuiver M, Braziunas T F. Sun, ocean, climate and atmospheric 14CO2:an evaluation of causal and spectral relationships[J]. The Holocene,1993, 3(4):289-305.

    Google Scholar

    [18] Rind D. The sun's role in climate variations[J]. Science, 2002, 296:673-677.

    Google Scholar

    [19] Geel B V, Raspopov O M, Renssen H, et al. The role of solar forcing upon climate change[J]. Quaternary Science Reviews, 1999, 18:331-338.

    Google Scholar

    [20] Julien Emile-Geay, Mark Cane, Richard Seager, et al. El Niño as a mediator of the solar influence on climate[J]. Paleoceanography, 2007, 22(3):3210-3221.

    Google Scholar

    [21] Dorale J A, Gonzalez L A, Reagan M K, et al. A high-resolution record of Holocene climate change in speleothem calcite from Coldwater cave, Northeast Iowa[J]. Science, 1992, 258:1626-1630.

    Google Scholar

    [22] Genty D, Blamart D, Ouahdi R, et al. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data[J]. Nature, 2003, 421:833-837.

    Google Scholar

    [23] Genty D, Baker A, Massault M, et al. Dead carbon in stalagmites:Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems[J]. Geochimica et Cosmochimica Acta, 2001, 65(20):3443-3457.

    Google Scholar

    [24] Genty D. Palaeoclimate research in Villars cave (Dordogne,SW-France)[J]. International Journal of Speleology, 2008, 37(3):173-191.

    Google Scholar

    [25] Couchoud I, Genty D, Hoffmann D, et al. Millennial-scale climate variability during the Last Interglacial recorded in a speleothem from south-western France[J]. Quaternary Science Review, 2010, doi:10.1016/j.quascirev.2009.08.014.

    Google Scholar

    [26] 罗维均, 王世杰, 刘秀明. 洞穴现代沉积物δ13C值的生物量效应及机理探讨:以贵州4个洞穴为例[J]. 地球化学, 2007, 36(4):344-350.

    Google Scholar

    [LUO Weijun, WANG Shijie, LIU Xiuming. Biomass effect on carbon isotope ratio of modern calcite deposition and its mechanism:A case study of 4 caves in Guizhou Province, China[J]. Geochimica, 2007, 36(4):344-350.]

    Google Scholar

    [27] 邱红烈. 中国福建省亚热带山地4000年来植被变化的孢粉记录[J]. 亚热带资源与环境学报, 2006,1(1):11-23.

    Google Scholar

    [QIU Honglie. A 4000-year pollen record of vegetation change from the subtropical mountains of Fujian Province, China[J]. Journal of Subtropical Resources and Environment, 2006, 1(1):11-23.]

    Google Scholar

    [28] 刘申,罗艳,黄钰辉,等. 鼎湖山五种植被类型群落生物量及其径级分配特征[J]. 生态科学, 2007, 26(5):387-393.

    Google Scholar

    [LIU Shen, LUO Yan, HUANG Yuhui, et al. Studies on the community biomass and its allocations of five forest types in Dinghushan nature reserve[J]. Ecological Science, 2007, 26(5):387-393.]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(934) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint