2010 Vol. 30, No. 4
Article Contents

LU Bo, LI Tiegang, YU Xinke, CHANG Fengming, NAN Qingyun. SEA SURFACE TEMPERATURE VARIATION DURING LAST GLACIAL MAXIMUM AT WEST TROPICAL PACIFIC[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 31-38. doi: 10.3724/SP.J.1140.2010.04031
Citation: LU Bo, LI Tiegang, YU Xinke, CHANG Fengming, NAN Qingyun. SEA SURFACE TEMPERATURE VARIATION DURING LAST GLACIAL MAXIMUM AT WEST TROPICAL PACIFIC[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 31-38. doi: 10.3724/SP.J.1140.2010.04031

SEA SURFACE TEMPERATURE VARIATION DURING LAST GLACIAL MAXIMUM AT WEST TROPICAL PACIFIC

  • The west tropical Pacific is the most vigorous one among global ocean-atmosphere interaction areas, as a significant part of Earth's climate system. To obtain the Sea Surface Temperature (SST) variation during the Last Glacial maximum (LGM) in this area, a gravity core WP7 from Ontong-Java plateau and some other cores were chosen. By solving the equations consisting of G.ruber's shell Mg/Ca, oxygen isotopes (δ18Oc) and SST, the impact upon G.ruber's shell Mg/Ca brought by seawater salinity was eliminated and SST estimation was obtained. The result shows that SST at west tropical Pacific is about 4.5℃ lower during LGM than in Late Holocene, and in the heart area of West Pacific Warm Pool(where modern SST is higher than 29℃) is about 3.9℃, smaller than 5.8℃ of the tropical Indian Ocean, and close to the figure of 3.6℃ in the east tropical Pacific, which may be the result of eastward migration and shrinking of West Pacific Warm Pool.
  • 加载中
  • [1] Yan X-H, Ho C-R, Zheng Q, et al. Temperature and size variabilities of the Western Pacific Warm Pool[J]. Science, 1992, 2585088:1643-1645.

    Google Scholar

    [2] CLIMAP. Seasonal reconstructions of the earth's surface at the Last Glacial Maximum. Geological Society of America Map Chart Series, MC-36. 1981.

    Google Scholar

    [3] Mashiotta T A, Lea D W, Spero H J. Glacial-interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminifera Mg[J]. Earth and Planetary Science Letters, 1999, 1704:417-432.

    Google Scholar

    [4] Lea D W, Pak D K, Spero H J. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000, 2895485:1719-1724.

    Google Scholar

    [5] Elderfield H, Ganssen G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios[J]. Nature, 2000, 4056785:442-445.

    Google Scholar

    [6] Levi C, Labeyrie L, Bassinot F, et al. Low-latitude hydrological cycle and rapid climate changes during the last deglaciation[J]. Geochemistry Geophysics Geosystems, 2007, 8:11.

    Google Scholar

    [7] de Garidel-Thoron T, Rosenthal Y, Beaufort L, et al. A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 ka[J]. Paleoceanography, 2007, 223.

    Google Scholar

    [8] Palmer M R, Pearson P N. A 23,000-year record of surface water pH and PCO2 in the western equatorial Pacific Ocean[J]. Science, 2003, 3005618:480-482.

    Google Scholar

    [9] de Villiers S. Dissolution effects on foraminiferal Mg/Ca records of sea surface temperature in the western equatorial Pacific[J]. Paleoceanography, 2003, 183.

    Google Scholar

    [10] de Garidel-Thoron T, Rosenthal Y, Bassinot F, et al. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years[J]. Nature, 2005, 4337023:294-298.

    Google Scholar

    [11] Stott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 2975579:222-226.

    Google Scholar

    [12] Stott L, Timmermann A, Thunell R. Southern hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming[J]. Science, 2007, 3185849:435-438.

    Google Scholar

    [13] Rosenthal Y, Oppo D W, Linsley B K. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific[J]. Geophysical Research Letters, 2003, 308:4.

    Google Scholar

    [14] Visser K, Thunell R, Stott L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation[J]. Nature, 2003, 4216919:152-155.

    Google Scholar

    [15] Xu J, Holbourn A, Kuhnt W G, et al. Changes in the thermocline structure of the Indonesian outflow during Terminations I and Ⅱ[J]. Earth and Planetary Science Letters, 2008, 2731-2:152-162.

    Google Scholar

    [16] Lea D W, Mashiotta T A, Spero H J. Controls on magne-sium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999, 6316:2369-2379.

    Google Scholar

    [17] Nürnberg D, Bijma J, Hemleben C. Erratum:Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperature[J]. Geochimica et Cosmochimica Acta, 1996, 60:2483-2484.

    Google Scholar

    [18] Nürnberg D, Bijma J, Hemleben C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures[J]. Geochimica et Cosmochimica Acta, 1996, 605:803-814.

    Google Scholar

    [19] Kisakurek B, Eisenhauer A, Bohm F, et al. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white)[J]. Earth and Planetary Science Letters, 2008, 2733-4:260-269.

    Google Scholar

    [20] Groeneveld J, Nurnberg D, Tiedemann R, et al. Foramini-feral Mg/Ca increase in the Caribbean during the Pliocene:Western Atlantic Warm Pool formation, salinity influence, or diagenetic overprint?[J]. Geochemistry Geophysics Geosystems, 2008, 9.

    Google Scholar

    [21] Ferguson J E, Henderson G M, Kucera M, et al. Systematic change of foraminiferal Mg/Ca ratios across a strong salinity gradient[J]. Earth and Planetary Science Letters, 2008, 2651-2:153-166.

    Google Scholar

    [22] Dueñas-Bohórquez A, da Rocha R E, Kuroyanagi A, et al. Effect of salinity and seawater calcite saturation state on Mg and Sr incorporation in cultured planktonic foraminifera[J]. Marine Micropaleontology, 2009, 733-4:178-189.

    Google Scholar

    [23] Mathien-Blard E, Bassinot F. Salinity bias on the foramini-fera Mg/Ca thermometry:Correction procedure and implications for past ocean hydrographic reconstructions[J]. Geochemistry Geophysics Geosystems, 2009, 10.

    Google Scholar

    [24] Wang L J. Isotopic signals in two morphotypes of Globigerinoides ruber (white) from the South China Sea:implications for monsoon climate change during the last glacial cycle[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2000, 1613-4:381-394.

    Google Scholar

    [25] Steinke S, Chiu H Y, Yu P S, et al. Mg/Ca ratios of two Globigerinoides ruber (white) morphotypes:Implications for reconstructing past tropical/subtropical surface water conditions[J]. Geochemistry Geophysics Geosystems, 2005, 6.

    Google Scholar

    [26] Mashiotta T A, Lea D W, Spero H J. Glacial-interglacial changes in subantarctic sea surface temperature and δ18O-water using foraminiferal Mg[J]. Earth and Planetary Science Letters, 1999, 170:417-432.

    Google Scholar

    [27] Dekens P S, Lea D W, Pak D K, et al. Core top calibration of Mg/Ca in tropical foraminifera:Refining paleotemperature estimation[J]. Geochemistry Geophysics Geosystems, 2002, 3.

    Google Scholar

    [28] Rosenthal Y, Lohmann G P. Accurate estimation of sea surface temperatures using dissolution-corrected calibrations for Mg/Ca paleothermometry[J]. Paleoceanography, 2002, 173:6.

    Google Scholar

    [29] Hastings D W, Kienast M, Steinke S, et al. A comparison of three independent paleotemperature estimates from a high resolution record of deglacial SST records in the tropical South China Sea[J]. AGU Fall Meeting Abstracts, 2001, 12:10.

    Google Scholar

    [30] Whitko A N, Hastings D W, Flower B P. Past sea surface temperatures in the tropical South China Sea based on a new foraminiferal Mg calibration. MarSci.01.020101, 2002.

    Google Scholar

    [31] Regenberg M, Steph S, N rnberg D, et al. Calibrating Mg/Ca ratios of multiple planktonic foraminiferal species with δ18O-calcification temperatures:Paleothermometry for the upper water column[J]. Earth and Planetary Science Letters, 2009, 2783-4:324-336.

    Google Scholar

    [32] Cleroux C, Cortijo E, Anand P, et al. Mg/Ca and Sr/Ca ratios in planktonic foraminifera:Proxies for upper water column temperature reconstruction[J]. Paleoceanography, 2008, 233.

    Google Scholar

    [33] Mohtadi M, Steinke S, Groeneveld J, et al. Low-latitude control on seasonal and interannual changes in planktonic foraminiferal flux and shell geochemistry off south Java:A sediment trap study[J]. Paleoceanography, 2009, 24.

    Google Scholar

    [34] Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003, 182.

    Google Scholar

    [35] McConnell M C, Thunell R C. Calibration of the planktonic foraminiferal Mg/Ca paleothermometer:sediment trap results from the Guaymas Basin, Gulf of California[J]. Paleoceanography, 2005, 202.

    Google Scholar

    [36] Huang K F, You C F, Lin H L, et al. In-situ calibration of Mg/Ca ratio in planktonic foraminiferal shell using time series sediment trap:A case study of intense dissolution artifact in the South China Sea[J]. Geochemistry Geophysics Geosystems, 2008, 9.

    Google Scholar

    [37] Pak D K, Lea D W, Kennett J P. Seasonal and interannual variation in Santa Barbara Basin water temperatures observed in sediment trap foraminiferal Mg/Ca[J]. Geochemistry Geophysics Geosystems, 2004, 5:18.

    Google Scholar

    [38] McCrea J M. On the isotopic chemistry of carbonates and a paleotemperature scale[J]. The Journal of Chemical Physics, 1950, 186:849-857.

    Google Scholar

    [39] LeGrande A N, Schmidt G A. Global gridded data set of the oxygen isotopic composition in seawater[J]. Geophysical Research Letters, 2006, 3312.

    Google Scholar

    [40] Kucera M, Rosell-Mele A, Schneider R, et al. Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO)[J]. Quaternary Science Reviews, 2005, 247-9:813-819.

    Google Scholar

    [41] Mix A C, Bard E, Schneider R. Environmental processes of the ice age:land, oceans, glaciers (EPILOG)[J]. Quaternary Science Reviews, 2001, 204:627-657.

    Google Scholar

    [42] Dahl K A, Oppo D W. Sea surface temperature pattern reconstructions in the Arabian Sea[J]. Paleoceanography, 2006, 211.

    Google Scholar

    [43] Oppo D W, Sun Y B. Amplitude and timing of sea-surface temperature change in the northern South China Sea:Dynamic link to the East Asian monsoon[J]. Geology, 2005, 3310:785-788.

    Google Scholar

    [44] Erez J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Biomineralization, vol. 54. Washington:Mineralogical Soc America, 2003:115-149.

    Google Scholar

    [45] Bentov S, Erez J. Novel observations on biomineralization processes in foraminifera and implications for Mg/Ca ratio in the shells[J]. Geology, 2005, 3311:841-844.

    Google Scholar

    [46] Bentov S, Erez J. Impact of biomineralization processes on the Mg content of foraminiferal shells:A biological perspective[J]. Geochemistry Geophysics Geosystems, 2006, 7:11.

    Google Scholar

    [47] Bentov S, Brownlee C, Erez J. The role of seawater endocytosis in the biomineralization process in calcareous foramini-fera[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 10651:21500-21504.

    Google Scholar

    [48] Eggins S M, Sadekov A, De Deckker P. Modulation and daily banding of Mg/Ca in Orbulina universa tests by symbiont photosynthesis and respiration:a complication for seawater thermometry?[J]. Earth and Planetary Science Letters, 2004, 2253-4:411-419.

    Google Scholar

    [49] 瞿成利. 海水中微量元素-碳酸钙共沉淀现象模拟:古海洋环境指标的实验研究[D].中国科学院研究生院,2007:219.[QU Chengli. Simulation of the coprecipitation of several trace elements with calcium carbonates in seawater:experimental evaluations of proxies for paleocheanography and paleocenvironment[D]. Graduate University of Chinese Academy of Sciences. 2007:219.]

    Google Scholar

    [50] Mucci A, Morse J W. The incorporation of Mg2+ and Sr2+ into calcite overgrowths:influences of growth rate and solution composition[J]. Geochimica et Cosmochimica Acta, 1983, 472:217-233.

    Google Scholar

    [51] Farrera I, Harrison S P, Prentice I C, et al. Tropical climates at the Last Glacial Maximum:a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake levels and geochemistry[J]. Climate Dynamics, 1999, 1511:823-856.

    Google Scholar

    [52] Barrows T T, Juggins S. Sea-surface temperatures around the Australian margin and Indian ocean during the last glacial maximum[J]. Quaternary Science Reviews, 2005, 247-9:1017-1047.

    Google Scholar

    [53] Trend-Staid M, Prell W L. Sea surface temperature at the Last Glacial Maximum:A reconstruction using the modern analog technique[J]. Paleoceanography, 2002, 174.

    Google Scholar

    [54] Kucera M, Weinelt M, Kiefer T, et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera:multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans[J]. Quaternary Science Reviews, 2005, 247-9:951-998.

    Google Scholar

    [55] Morey A E, Mix A C, Pisias N G. Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables[J]. Quaternary Science Reviews, 2005, 247-9:925-950.

    Google Scholar

    [56] Ohkouchi N, Kawamura K, Nakamura T, et al. Small changes in the sea-surface temperature during the last 20,000 years-molecular evidence from the western tropical Pacific[J]. Geophysical Research Letters, 1994, 2120:2207-2210.

    Google Scholar

    [57] Pelejero C, Grimalt J O, Heilig S, et al. High-resolution U-37(K) temperature reconstructions in the South China Sea over the past 220 ka[J]. Paleoceanography, 1999, 142:224-231.

    Google Scholar

    [58] Andreasen D J, Ravelo A C. Tropical Pacific Ocean thermocline depth reconstructions for the last glacial maximum[J]. Paleoceanography, 1997, 123:395-413.

    Google Scholar

    [59] Beck J W, Recy J, Taylor F, et al. Abrupt changes in early Holocene tropical sea surface temperature derived from coral records[J]. Nature, 1997, 3856618:705-707.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(953) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint