2024 Vol. 7, No. 2
Article Contents

Tao Li, Chen-chen Xie, Chong Xu, Wen-wen Qi, Yuan-dong Huang, Lei Li, 2024. Automated machine learning for rainfall-induced landslide hazard mapping in Luhe County of Guangdong Province, China, China Geology, 7, 314-328. doi: 10.31035/cg2024064
Citation: Tao Li, Chen-chen Xie, Chong Xu, Wen-wen Qi, Yuan-dong Huang, Lei Li, 2024. Automated machine learning for rainfall-induced landslide hazard mapping in Luhe County of Guangdong Province, China, China Geology, 7, 314-328. doi: 10.31035/cg2024064

Automated machine learning for rainfall-induced landslide hazard mapping in Luhe County of Guangdong Province, China

More Information
  • Landslide hazard mapping is essential for regional landslide hazard management. The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County, China based on an automated machine learning framework (AutoGluon). A total of 2241 landslides were identified from satellite images before and after the rainfall event, and 10 impact factors including elevation, slope, aspect, normalized difference vegetation index (NDVI), topographic wetness index (TWI), lithology, land cover, distance to roads, distance to rivers, and rainfall were selected as indicators. The WeightedEnsemble model, which is an ensemble of 13 basic machine learning models weighted together, was used to output the landslide hazard assessment results. The results indicate that landslides were mainly occurred in the central part of the study area, especially in Hetian and Shanghu. Totally 102.44 s were spent to train all the models, and the ensemble model WeightedEnsemble has an Area Under the Curve (AUC) value of 92.36% in the test set. In addition, 14.95% of the study area was determined to be at very high hazard, with a landslide density of 12.02 per square kilometer. This study serves as a significant reference for the prevention and mitigation of geological hazards and land use planning in Luhe County.

  • 加载中
  • Abella EAC, Van Westen CJ. 2008. Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del Sur, Guantánamo, Cuba. Geomorphology, 94(3–4), 453–466. doi: 10.1016/j.geomorph.2006.10.038.

    CrossRef Google Scholar

    Abuzied SM, Alrefaee HA. 2019. Spatial prediction of landslide-susceptible zones in El-Qaá area, Egypt, using an integrated approach based on GIS statistical analysis. Bulletin of Engineering Geology and the Environment, 78, 2169–2195. doi: 10.1007/s10064-018-1302-x.

    CrossRef Google Scholar

    Al-Najjar HAH, Pradhan B, Beydoun G, Sarkar R, Park HJ, Alamri A. 2022. A novel method using explainable artificial intelligence (XAI)-based Shapley Additive Explanations for spatial landslide prediction using time-series SAR dataset. Gondwana Research, 123(2023), 107–124. doi: 10.1016/j.gr.2022.08.004.

    CrossRef Google Scholar

    Ali MZ, Chu HJ, Chen YC, Ullah S. 2021. Machine learning in earthquake-and typhoon-triggered landslide susceptibility mapping and critical factor identification. Environmental Earth Sciences, 80, 233. doi: 10.1007/s12665-021-09510-z.

    CrossRef Google Scholar

    Bai HL, Feng WK, Yi XY, Fang HY, Wu YY, Deng PC, Dai HC, Hu R. 2021. Group-occurring landslides and debris flows caused by the continuous heavy rainfall in June 2019 in Mibei Village, Longchuan County, Guangdong Province, China. Natural Hazards, 108(3), 3181–3201. doi: 10.1007/s11069-021-04819-1.

    CrossRef Google Scholar

    Baum RL, Godt JW, Savage WZ. 2010. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. Journal of Geophysical Research: Earth Surface, 115(F3), F03013. doi: 10.1029/2009JF001321.

    CrossRef Google Scholar

    Breiman L. 2001. Random forests. Machine Learning, 45, 5–32. doi: 10.1023/A:1010933404324.

    CrossRef Google Scholar

    Chen W, Zhang S, Li RW, Shahabi H. 2018. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Science of the Total Environment, 644, 1006–1018. doi: 10.1016/j.scitotenv.2018.06.389.

    CrossRef Google Scholar

    Cui YL, Bao PP, Xu C, Ma SY, Zheng J, Fu G. 2021. Landslides triggered by the 6 September 2018 Mw6.6 Hokkaido, Japan: An updated inventory and retrospective hazard assessment. Earth Science Informatics, 14, 247–258. doi: 10.1007/s12145-020-00544-8.

    Google Scholar

    Cui YL, Jin JL, Huang QB, Yuan K, Xu C. 2022. A data-driven model for spatial shallow landslide probability of occurrence due to a typhoon in Ningguo City, Anhui Province, China. Forests, 13(5), 732. doi: 10.3390/f13050732.

    CrossRef Google Scholar

    Cui YL, Yang WH, Xu C, Wu S. 2023. Distribution of ancient landslides and landslide hazard assessment in the Western Himalayan Syntaxis area. Frontiers in Earth Science, 11, 1135018. doi: 10.3389/feart.2023.1135018.

    CrossRef Google Scholar

    Dai FC, Lee CF. 2002. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3-4), 213–228. doi: 10.1016/S0169-555X(01)00087-3.

    CrossRef Google Scholar

    Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ. 2013. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. doi: 10.1111/j.1600-0587.2012.07348.x.

    CrossRef Google Scholar

    Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu ZF, Chen CW, Khosravi K, Yang Y, Pham BT. 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment, 662, 332–346. doi: 10.1016/j.scitotenv.2019.01.221.

    CrossRef Google Scholar

    Erickson N, Mueller J, Shirkov A, Zhang H, Larroy P, Li M, Smola A. 2020. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint arXiv: 2003.06505,doi: 10.48550/arXiv.2003.06505.

    Google Scholar

    Fan W, Wei XS, Cao YB, Zheng B. 2017. Landslide susceptibility assessment using the certainty factor and analytic hierarchy process. Journal of Mountain Science, 14(5), 906–925. doi: 10.1007/s11629-016-4068-2.

    CrossRef Google Scholar

    Fawcett T. 2006. An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. doi: 10.1016/j.patrec.2005.10.010.

    CrossRef Google Scholar

    Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ. 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102(3-4), 99–111. doi: 10.1016/j.enggeo.2008.03.014.

    CrossRef Google Scholar

    Feng WK, Bai HL, Lan B, Wu YY, Wu ZT, Yan LZ, Ma XJ. 2022. Spatial–temporal distribution and failure mechanism of group-occurring landslides in Mibei Village, Longchuan County, Guangdong, China. Landslides, 19(8), 1957–1970. doi: 10.1007/s10346-022-01904-9.

    CrossRef Google Scholar

    Geurts P, Ernst D, Wehenkel L. 2006. Extremely randomized trees. Machine Learning, 63, 3–42. doi: 10.1007/s10994-006-6226-1.

    CrossRef Google Scholar

    Guo ZZ, Tian BX, He J, Xu C, Zeng TR, Zhu YH. 2023. Hazard assessment for regional typhoon-triggered landslides by using physically-based model–A case study from southeastern China. Georisk:Assessment and Management of Risk for Engineered Systems and Geohazards, 0(0), 740–754. doi: 10.1080/17499518.2023.2188465.

    CrossRef Google Scholar

    Haque U, Da Silva PF, Devoli G, Pilz J, Zhao B, Khaloua A, Wilopo W, Andersen P, Lu P, Lee J. 2019. The human cost of global warming: Deadly landslides and their triggers (1995–2014). Science of the Total Environment, 682, 673–684. doi: 10.1016/j.scitotenv.2019.03.415.

    CrossRef Google Scholar

    Herrera S, Kotlarski S, Soares PMM, Cardoso RM, Jaczewski A, Gutiérrez JM, Maraun D. 2019. Uncertainty in gridded precipitation products: Influence of station density, interpolation method and grid resolution. International Journal of Climatology, 39(9), 3717–3729. doi: 10.1002/joc.5878.

    CrossRef Google Scholar

    Hong HY, Xu C, Bui DT. 2015. Landslide susceptibility assessment at the Xiushui area (China) using frequency ratio model. Procedia Earth and Planetary Science, 15, 513–517. doi: 10.1016/j.proeps.2015.08.065.

    CrossRef Google Scholar

    Huang YD, Li L, Xu C, Cheng J, Xu XW, Zheng TY, Zhang XJ. 2022. Spatiotemporal distribution patterns of deadly geohazard events in China, 2013–2019. Natural Hazards Research, 2(4), 316–324. doi: 10.1016/j.nhres.2022.10.003.

    CrossRef Google Scholar

    Huangfu WC, Wu WC, Zhou XT, Lin ZY, Zhang GL, Chen RX, Song Y, Lang T, Qin YZ, Ou PH. 2021. Landslide geo-hazard risk mapping using logistic regression modeling in Guixi, Jiangxi, China. Sustainability, 13(9), 4830. doi: 10.3390/su13094830.

    CrossRef Google Scholar

    Hungr O, Leroueil S, Picarelli L. 2014. The Varnes classification of landslide types, an update. Landslides, 11, 167–194. doi: 10.1007/s10346-013-0436-y.

    CrossRef Google Scholar

    Ke GL, Meng Q, Finley T, Wang TF, Chen W, Ma WD, Ye QW, Liu TY. 2017. Lightgbm: A highly efficient gradient boosting decision tree. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, 3149–3157.

    Google Scholar

    Ko Ko C, Flentje P, Chowdhury R. 2004. Landslides qualitative hazard and risk assessment method and its reliability. Bulletin of Engineering Geology and the Environment, 63, 149–165. doi: 10.1007/s10064-004-0231-z.

    CrossRef Google Scholar

    Kornejady A, Ownegh M, Bahremand A. 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena, 152, 144–162. doi: 10.1016/j.catena.2017.01.010.

    CrossRef Google Scholar

    Li XS, Li QH, Hu YJ, Chen QS, Peng J, Xie YL, Wang JW. 2022. Study on three-dimensional dynamic stability of open-pit high slope under blasting vibration. Lithosphere, 2022(Special 4), 6426550. doi: 10.2113/2022/6426550.

    Google Scholar

    Liang X, Segoni S, Yin KL, Du J, Chai B, Tofani V, Casagli N. 2022. Characteristics of landslides and debris flows triggered by extreme rainfall in Daoshi Town during the 2019 Typhoon Lekima, Zhejiang Province, China. Landslides, 19(7), 1735–1749. doi: 10.1007/s10346-022-01889-5.

    CrossRef Google Scholar

    Ling X, Zhu YQ, Ming DP, Chen YY, Zhang L, Du TY. 2022. Feature engineering of geohazard susceptibility analysis based on the random forest algorithm: Taking Tianshui City, Gansu Province, as an example. Remote Sensing, 14(22), 5658. doi: 10.3390/rs14225658.

    CrossRef Google Scholar

    Ma SY, Shao XY, Xu C. 2022. Characterizing the distribution pattern and a physically based susceptibility assessment of shallow landslides triggered by the 2019 heavy rainfall event in Longchuan County, Guangdong Province, China. Remote Sensing, 14(17), 4257. doi: 10.3390/rs14174257.

    CrossRef Google Scholar

    Ma SY, Shao XY, Xu C. 2023a. Estimating the quality of the most popular machine learning algorithms for landslide susceptibility mapping in 2018 Mw7. 5 Palu earthquake. Remote Sensing, 15(19), 4733. doi: 10.3390/rs15194733.

    CrossRef Google Scholar

    Ma SY, Shao XY, Xu C. 2023b. Physically-based rainfall-induced landslide thresholds for the Tianshui area of Loess Plateau, China by TRIGRS model. Catena, 233, 107499. doi: 10.1016/j.catena.2023.107499.

    CrossRef Google Scholar

    Ma SY, Shao XY, Xu C. 2023c. Landslides triggered by the 2016 heavy rainfall event in Sanming, Fujian Province: Distribution pattern analysis and spatio-temporal susceptibility assessment. Remote Sensing, 15(11), 2738. doi: 10.3390/rs15112738.

    CrossRef Google Scholar

    Ma SY, Xu C. 2019. Assessment of co-seismic landslide hazard using the Newmark model and statistical analyses: A case study of the 2013 Lushan, China, Mw6. 6 earthquake. Natural Hazards, 96, 389–412. doi: 10.1007/s11069-018-3548-9.

    CrossRef Google Scholar

    Montgomery DR, Dietrich WE, Torres R, Anderson SP, Heffner JT, Loague K. 1997. Hydrologic response of a steep, unchanneled valley to natural and applied rainfall. Water Resources Research, 33(1), 91–109. doi: 10.1029/96WR02985.

    CrossRef Google Scholar

    Nery TD, Vieira BC. 2015. Susceptibility to shallow landslides in a drainage basin in the Serra do Mar, São Paulo, Brazil, predicted using the SINMAP mathematical model. Bulletin of Engineering Geology and the Environment, 74, 369–378. doi: 10.1007/s10064-014-0622-8.

    CrossRef Google Scholar

    Nhu VH, Hoang ND, Nguyen H, Ngo PTT, Bui TT, Hoa PV, Samui P, Bui DT. 2020. Effectiveness assessment of Keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical area. Catena, 188, 104458. doi: 10.1016/j.catena.2020.104458.

    CrossRef Google Scholar

    Panchal S, Shrivastava AK. 2022. Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India. Ain Shams Engineering Journal, 13(3), 101626. doi: 10.1016/j.asej.2021.10.021.

    CrossRef Google Scholar

    Parmanto B, Munro PW, Doyle HR. 1996. Reducing variance of committee prediction with resampling techniques. Connection Science, 8(3-4), 405–426. doi: 10.1080/095400996116848.

    CrossRef Google Scholar

    Qi WW, Xu C, Xu XW. 2021. AutoGluon: A revolutionary framework for landslide hazard analysis. Natural Hazards Research, 1(3), 103–108. doi: 10.1016/j.nhres.2021.07.002.

    CrossRef Google Scholar

    Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. 2018. A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180, 60–91. doi: 10.1016/j.earscirev.2018.03.001.

    CrossRef Google Scholar

    Sahin EK. 2022. Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping. Geocarto International, 37(9), 2441–2465. doi: 10.1080/10106049.2020.1831623.

    CrossRef Google Scholar

    Shao XY, Ma SY, Xu C, Xu YR. 2023. Insight into the characteristics and triggers of loess landslides during the 2013 heavy rainfall event in the Tianshui Area, China. Remote Sensing, 15(17), 4304. doi: 10.3390/rs15174304.

    CrossRef Google Scholar

    Singh K, Kumar V. 2018. Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in bosom of Himalaya. Journal of Mountain Science, 15(4), 808–824. doi: 10.1007/s11629-017-4634-2.

    CrossRef Google Scholar

    Sun DL, Gu QY, Wen HJ, Xu JH, Zhang YL, Shi SX, Xue MM, Zhou XZ. 2022. Assessment of landslide susceptibility along mountain highways based on different machine learning algorithms and mapping units by hybrid factors screening and sample optimization. Gondwana Research, 123(2023), 89–106. doi: 10.1016/j.gr.2022.07.013.

    CrossRef Google Scholar

    Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I. 2016. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13, 361–378. doi: 10.1007/s10346-015-0557-6.

    CrossRef Google Scholar

    Tsangaratos P, Ilia I. 2016. Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece. Landslides, 13, 305–320. doi: 10.1007/s10346-015-0565-6.

    CrossRef Google Scholar

    Van Westen CJ, Van Asch TWJ, Soeters R. 2006. Landslide hazard and risk zonation—why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65, 167–184. doi: 10.1007/s10064-005-0023-0.

    Google Scholar

    Wang HP, Wang XD, Zhang CB, Wang C, Li SY. 2023. Analysis on the susceptibility of environmental geological disasters considering regional sustainable development. Environmental Science and Pollution Research, 30(4), 9749–9762. doi: 10.1007/s11356-022-22778-3.

    CrossRef Google Scholar

    Wang P, Bai XY, Wu XQ, Yu HJ, Hao YR, Hu BX. 2018. GIS-based random forest weight for rainfall-induced landslide susceptibility assessment at a humid region in Southern China. Water, 10(8), 1019. doi: 10.3390/w10081019.

    CrossRef Google Scholar

    Wen BY, Xu C, He XL, Ma SY, Shao XY, Li K, Zhang ZJ, Li ZF. 2020. Hazard assessment of co-seismic landslides based on information value method: A case in 2018 Mw6. 6 Hokkaido earthquake, Japan. Earthquake Research in China, 34(1), 64–80. doi: 10.19743/j.cnki.0891-4176.

    Google Scholar

    Wu H, Song T. 2018. An evaluation of landslide susceptibility using probability statistic modeling and GIS's spatial clustering analysis. Human and Ecological Risk Assessment:An International Journal, 24(7), 1952–1968. doi: 10.1080/10807039.2018.1435253.

    CrossRef Google Scholar

    Xu C, Xu XW, Dai FC, Wu ZD, He HL, Shi F, Wu XY, Xu SN. 2013. Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Natural Hazards, 68, 883–900. doi: 10.1007/s11069-013-0661-7.

    CrossRef Google Scholar

    Xu C, Xu XW, Yao X, Dai FC. 2014. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw7. 9 earthquake of China and their spatial distribution statistical analysis. Landslides, 11, 441–461. doi: 10.1007/s10346-013-0404-6.

    CrossRef Google Scholar

    Yao JY, Qin SW, Qiao SS, Che WC, Chen Y, Su G, Miao Q. 2020. Assessment of landslide susceptibility combining deep learning with semi-supervised learning in Jiaohe County, Jilin Province, China. Applied Sciences, 10(16), 5640. doi: 10.3390/app10165640.

    CrossRef Google Scholar

    Yu B, Chen WH, Feng WK, Liu K, Ye LZ. 2023. A case study of shallow landslides triggered by rainfall in Sanming, Fujian Province, China. Environmental Earth Sciences, 82(18), 426. doi: 10.1007/s12665-023-11118-4.

    CrossRef Google Scholar

    Zhang S, Li C, Peng JY, Peng DL, Xu Q, Zhang Q, Bate B. 2021. GIS-based soil planar slide susceptibility mapping using logistic regression and neural networks: A typical red mudstone area in southwest China. Geomatics, Natural Hazards and Risk, 12(1), 852–879. doi: 10.1080/19475705.2021.1896584.

    Google Scholar

    Zhang TL, Zhou AG, Sun Q, Wang HS, Wu JB, Liu ZH. 2020. Hydrological response characteristics of landslides under typhoon-triggered rainstorm conditions. China Geology, 3(3), 455–461. doi: 10.31035/cg2020028.

    CrossRef Google Scholar

    Zhang TY, Quevedo RP, Wang HY, Fu Q, Luo D, Wang T, de Oliveira GG, Guasselli LA, Renno CD. 2022. Improved tree-based machine learning algorithms combining with bagging strategy for landslide susceptibility modeling. Arabian Journal of Geosciences, 15(2), 183. doi: 10.1007/s12517-022-09488-3.

    CrossRef Google Scholar

    Zhang WG, He YW, Wang LQ, Liu SL, Meng XY. 2023. Landslide susceptibility mapping using random forest and extreme gradient boosting: A case study of Fengjie, Chongqing. Geological Journal, 58(6), 2372–2387. doi: 10.1002/gj.4683.

    CrossRef Google Scholar

    Zhang WG, Liu SL, Wang LQ, Samui P, Chwała M, He YW. 2022. Landslide susceptibility research combining qualitative analysis and quantitative evaluation: A case study of Yunyang County in Chongqing, China. Forests, 13(7), 1055. doi: 10.3390/f13071055.

    CrossRef Google Scholar

    Zhang YH, Ge TT, Tian W, Liou YA. 2019. Debris flow susceptibility mapping using machine-learning techniques in Shigatse area, China. Remote Sensing, 11(23), 2801. doi: 10.3390/rs11232801.

    CrossRef Google Scholar

    Zhou XT, Wu WC, Qin YZ, Fu X. 2021. Geoinformation-based landslide susceptibility mapping in subtropical area. Scientific Reports, 11(1), 24325. doi: 10.1038/s41598-021-03743-5.

    CrossRef Google Scholar

    Zhou XZ, Wen HJ, Li ZW, Zhang H, Zhang WG. 2022. An interpretable model for the susceptibility of rainfall-induced shallow landslides based on SHAP and XGBoost. Geocarto International, 37(26), 13419–13450. doi: 10.1080/10106049.2022.2076928.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(130) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint