Citation: | Xue-peng Duan, Fan-cong Meng, Zong-qi Wang, Xiao-fei Yu, 2024. Metallogenic characteristics of Shitoukengde intrusion and its implications for Ni-Co-(Cu) sulfide mineralization in East Kunlun, China Geology, 7, 714-729. doi: 10.31035/cg2023070 |
Xiarihamu deposit is the only super-large Ni-Co deposit found in East Kunlun orogenic belt (EKOB) until present. Shitoukengde (STKD) intrusion is considered to have the potential to become a large Ni-Co deposit in East Kunlun. In order to discuss the metallogenic potential, this study present petrographical, geochemical data, and zircon U-Pb dating for the STKD intrusion. The STKD intrusion is hosted within mafic-ultramafic rocks which contain peridotite, pyroxenite and gabbro, and mainly intruded into the marble of the Paleoproterozoic Jinshuikou Group. Harzburgite and orthopyroxenite are the main country rocks for the Cu-Ni sulfide mineralization. Combine with the positive εHf(t) values (+1.1 to +8.6) of zircons, the enrichment of LILEs, depletion of HFSEs, and lower Ce/Pb ratios of whole rocks indicate that the parental magma was originated from the depleted asthenospheric mantle and experienced 5%–15% crustal contamination. Troctolite formed during the Early Devonian and it has weighted mean 206Pb/238U age of 412 Ma. Regional background information has indicated that the post-collisional extension setting has already existed during the Early Devonian, leading to the formation of STKD intrusion and Cu-Ni sulfide mineralization. STKD intrusion may have the potential to be one economic Cu-Ni sulfide deposit but seems unlikely to be a super-large one.
Aldanmaz E, Pearce JA, Thirlwall MF, Mitchell JG. 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102, 67–95. doi: 10.1016/S0377–0273(00)00182–7. |
Ao C, Sun FS, Li B, Wang G, Li L, Li S, Zhao JW. 2015. U-Pb dating, geochemistry and tectonic implications of Xiaojianshan gabbro in Qimantage Mountain, Eastern Kunlun orogenic belt. Geotectonica Et Metallogenia, 39(6), 1176–1184 (in Chinese with English abstract). doi: 10.16539/j.ddgzyckx.2015.06.016. |
Barnes SJ, Yao ZS, Mao YJ, Jesus AP, Yang S, Taranovic V and Maier WD. 2023. Nickel in olivine as an exploration indicator for magmatic Ni-Cu sulfide deposits: A data review and re-evaluation. American Mineralogist, 108(1), 1–17. doi: 10.2138/am-2022-8327. |
Bian QT, Li DH, Pospelov I, Yin LM, Li HS, Zhao DS, Chang CF, Luo XQ, Gao SL, Astrakhantsev O. 2004. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 23(4), 577–596. doi: 10.1016/j.jseaes.2003.09.003. |
Bian QT, Luo XQ, Li HS, Chen HH, Zhao DS. Li DH. 1999. Discovery of Early Paleozoic and Early Carboniferous-Early Permian ophiolites in the A'nyemaqen, Qinghai province, China. Scientia Geologica Sinica, 34(3), 437–438 (in Chinese with English abstract). |
Campbell IH, Griffiths RW. 1993. The evolution of the mantle`s chemical structure. Lithos, 30(3–4), 389–399. doi: 10.1016/0024-4937(93)90047-G. |
Chai G, Naldrett AJ. 1992. Charicteristics of Ni-Cu-PGE Mineralization and genesis of the Jinchuan deposit, Northwest China. Economic Geology, 87, 1475–1495. doi: 10.2113/gsecongeo.87.6.1475. |
Chen LM, Song XY, Hu RZ, Yu SY, Yi JN, Kang J, Huang KJ. 2021. Mg-Sr-Nd isotopic insights into petrogenesis of the Xiarihamu Mafic-Ultramafic Intrusion, Northern Tibetan Plateau, China. Journal of Petrology, 62(2), egaa113. doi: 10.1093/petrology/egaa113. |
Chen NS, Li XY, Zhang KX, Wang GC, Zhu YH, Hou GJ, Bai YS. 2006. Lithological characteristics of the Baishahe Formation to the south of Xiangride town, Eastern Kunlun Mountains and its age constrained. Geological Science and Technology Information, 25, 1–7 (in Chinese with English abstract). doi: 10.1007/s11442-006-0415-5. |
Chen NS, Sun M, He L, Zhang KX, Wang GC. 2002. Precise timing of the Early Paleozoic metamorphism and thrust deformation in the Eastern Kunlun Orogen. Chinese Science Bulletin, 47(13), 1130–1133 (in Chinese with English abstract). doi: 10.1360/02tb9253. |
Chen NS, Sun M, Wang QY, Zhao GC, Chen Q, Shu GM. 2007. EMP chemical ages of monazites from Central Zone of the eastern Kunlun Orogen: Records of multi-tectonometamorphic events. Chinese Science Bulletin, 52(16), 2252–2263 (in Chinese with English abstract). doi: 10.1007/s11434-007-0299-5. |
Chen X, Wang H, Mao JW, Yu M, Qiao JF, Wang ZA. 2023. Genesis and geological significance of hydrothermal Pb-Zn orebodies in Xiarihamu mining area, East Kunlun Mountains, China. Earth Science Frontiers, 160(2), 347–369 (in Chinese with English abstract). doi: 10.13745/j.esf.sf.2022.2.76. |
Coleman RG, 1977. Ophiolites: Ancient Oceanic Lithosphere? Springer-Verlag, Berlin, Heidelberg, New York, 1–229. doi: 10.1007/978–3–642–66673–5. |
Cui MH, Meng FC, Wu XK. 2011. Early Ordovician island arc of Yaziquan, west of Qimantag Mountain, eastern Kunlun: Evidences from geochemistry, Sm-Nd isotope and geochronology of intermediate-basic igneous rocks. Acta Petrologica Sinica, 27(11), 3365–3379 (in Chinese with English abstract). doi: 10.2110/jsr.2011.62. |
Dick HJB, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1), 54–76. doi: 10.1007/BF00373711. |
Feng JY, Pei XZ, Yu SL, Ding SP, Li RB, Yu S, Zhang YF, Li ZC, Chen YX, Zhang XF. 2010. The discovery of the mafic-ultramafic melange in Kekesha area of Dulan County, East Kunlun region, and its LA-ICP-MS zircon U-Pb age. Geology in China, 37(1), 28–38 (in Chinese with English abstract). |
Hanyu T, Tatsumi Y, Nakai S, Chang Q, Miyazaki T, Sato K, Tani K, Shibata T, Yoshida T. 2006. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: Constraints from geochemistry. Geochemistry, Geophysics, Geosystems, 7(8), 1–29. doi: 10.1029/2005gc001220. |
He DF, Dong YP, Liu XM, Yang Z, Sun SS, Cheng B, Li W. 2015. Tectono-thermal events in East Kunlun, Northern Tibetan Plateau: Evidence from zircon U-Pb geochronology. Gondwana Research, 30, 179–190. doi: 10.1016/j.gr.2015.08.002. |
He HL, Chen LM, Song XY, Fu B, Yi JN, Yu SY, Deng YF. 2022. Genesis of the Xiarihamu Magmatic Ni-Co Sulfide Deposit in the East Kunlun Orogen, Northern Tibetan Plateau: In Situ Oxygen Isotope and Geochemical Perspectives. Economic Geology. doi: 10.5382/econgeo.4949. |
Hofmann AW. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–229. doi: 10.1038/385219a0. |
Holzhied A, Grove TL. 2002. Sulfur saturation limits in silicate melts and their implications for core formation scenarios for terrestrial planets. American Mineralogist, 87(2−3), 227–237. doi: 10.2138/am–2002–2–304. |
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR, Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10), 2595–2604 (in Chinese with English abstract). |
Huang H, Niu YL, Nowell G, Zhao ZD, Yu XH, Zhu DC, Mo XX, Ding S. 2014. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism. Chemical Geology, 370, 1–18. doi: 10.1016/j.chemgeo.2014.01.010. |
Irvine TN. 1974. Petrology of the Duke Island Ultramafic Complex Southeastern Alaska. Geological Society of America Memoirs, 138, 1–244. doi: 10.1130/MEM138–p1. |
Jia LH, Mao JW, Li BL, Zhang DY, Sun TT. 2021. Geochronology and petrogenesis of the Late Silurian Shitoukengde mafic–ultramafic intrusion, NW China: Implications for the tectonic setting and magmatic Ni-Cu mineralization in the East Kunlun Orogenic Belt. International Geology Review, 63(5), 549–570. doi: 10.1080/00206814.2020.1722969. |
Jiang CF, Yang JS, Feng BG, Zhu ZZ, Zhao M, Chai YC, Shi XD, Wang HD, Hu JQ. 1992. Opening-Closing Tectonics of Kunlun Mountains, Geological Publishing House, Beijing, 1–224 (in Chinese). |
Jiang CY, Ling JL, Zhou W, Du W, Wang ZX, Fan YZ, Song YF, Song ZB. 2015. Petrogenesis of the Xiarihamu Ni-bearing layerd mafic-ultramafic in trusion, East Kunlun: Implications for its extensional island arc environment. Acta Geologica Sinica, 31(4), 1117–1136 (in Chinese with English abstract). |
Kong HL, Li JC, Guo XZ, Yao XG. Jia QZ. 2019. The discovery of Early Devonian pyroxene peridotite from the Xiwangmu magmatic Ni-Cu sulfide ore spot in East Kunlun Mountains. Geology in China, 46(1), 205–206 (in Chinese with English abstract). doi: 10.12029/gc20190114. |
Li CS, Naldrett AJ, Ripley EM. 2001. Critical factors for the formation of a nickel-copper deposit in an evolved magma system: Lessons from comparison of the Pants Lake and Voisey`s Bay sulfide occurrences in Labrador, Canada. Mineralium Deposita, 36, 85–92. doi: 10.1007/s001260050288. |
Li CS, Zhang ZW, Li WY, Wang YL, Sun T, Ripley EM. 2015. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China. Lithos, 216–217, 224–240. doi: 10.1016/j.lithos.2015.01.003. |
Li HK, Geng JZ, Hao S, Zhang YQ, Li HM. 2009. The study of zircon U–Pb dating by means LA-MC-ICPMS. Bulletin of Mineralogy, Petrology and Geochemistry, 29(s1), 600–601 (in Chinese with English abstract). doi: 10.16461/j.cnki.1000-4734.2009.s1.014600. |
Li L, Sun FY, Li SJ, Li BL, Qian H, Wang C, Zhao TF, Yu L, Wang G, Huo L, Wang L, Zhang YJ, Wang LL, Li HR, Yan JM, Li YJ, Zhang DX, Yang YQ, Wang W. 2022. Metallogenic geological conditions and regularity of magmatic Cu-Ni sulfide deposits in the East Kunlun metallogenic belt. Journal of Jilin University (Earth Science Edition), 52(5), 1461–1496 (in Chinese with English abstract). doi: 10.13278/j.cnki.jjuese.20220045. |
Li RB, Pei XZ, Li ZC, Patias D, Su ZG, Pei L, Chen GC, Chen YX, Liu CJ. 2020. Late Silurian to Early Devonian volcanics in the East Kunlun orogen, northern Tibetan Plateau: Record of postcollisional magmatism related to the evolution of the Proto-Tethys Ocean. Journal of Geodynamics, 140, 101780. doi: 10.1016/j.jog.2020.101780. |
Li RB, Pei XZ, Wei B, Li ZC, Pei L, Chen GC, Chen YX, Liu CJ. 2021. Middle Cambrian-Early Ordovician ophiolites in the central fault of the East Kunlun Orogen: Implications for an epicontinental setting related to Proto-Tethyan Ocean subduction. Gondwana Research, 94, 243–258. doi: 10.1016/j.gr.2021.02.017. |
Li RB, Pei XZ, Wei B, Li ZC, Pei L, Chen YX, Liu CJ, Cheng GC, Wang M, Feng K. 2019. Constraints of late Cambrian mafic rocks from the Qushi'ang ophiolite on a back-arc system in a continental margin, East Kunlun Orogen, Western China. Journal of Asian Earth Sciences, 169, 117–129. doi: 10.1016/j.jseaes.2018.08.006. |
Li WY, Zhang ZW, Gao YB, Chen B, Hong J. 2021. Tectonic transformation the Kunlun orogen of Paleo-Tethys, North China, and the metallization of critical mineral resource’s nickel, cobalt, manganese and lithium. Geology in China, 49(5), 1385–1407 (in Chinese with English abstract). doi: 10.12029/gc20220503. |
Li WY, Zhang ZW, Wang YL, Zhang JW, You MX, Zhang ZB, Norbu N. 2022. Tectonic transformation of proto- and Paleo-Tethys and the metallization of magmatic Ni-Cu-Co sulfide deposits in Kunlun Orogen, Northwest China. Journa of Earth Sciences and Environment, 44(1), 1–19 (in Chinese with English abstract). doi: 10.19814/j.jese.2021.08033. |
Liu B, Ma CQ, Guo P, Zhang JY, Xiong FH, Huang J, Jiang HA. 2013a. Discovery of the middle Devonian A-type granite from the Eastern Kunlun Orogen and its tectonic implications. Earth Science - Journal of China University of Geosciences, 38(5), 947–962 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.093. |
Liu B, Ma CQ, Jiang HA, Guo P, Zhang JY, Xiong FH. 2013b. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the Eastern Kunlun region: Evidence from Huxiaoqin mafic rocks. Acta Petrologica Sinica, 29(6), 2093–2106 (in Chinese with English abstract). doi: 10.2113/gssajg.116.1.169. |
Liu B, Ma CQ, Zhang JY, Xiong FH, Huang J, Jiang HA. 2012. Petrogenesis of Early Devonian intrusive rocks in the east part of Eastern Kunlun Orogen and implication for Early Palaeozoic orogenic processes. Acta Petrologica Sinica, 28(6), 1785–1807 (in Chinese with English abstract). |
Liu Q, Meng FC, Li SR, Feng HB, Jia LH, Tian GK. 2016. Geochronology of zircon from the paragneiss of Kuhai Group in southern East Kunlun terrane. Acta Petrologica Et Mineralogica, 35(3), 469–483 (in Chinese with English abstract). |
Liu YG, Chen ZG, Li WY, Xu XH, Kou X, Jia QZ, Zhang ZW, Liu F, Wang YL, You MX. 2019. The Cu-Ni mineralization potential of the Kaimuqi mafic-ultramafic complex and the indicators for the magmatic Cu-Ni sulfide deposit exploration in the East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau, China. Journal of Geochemical Exploration, 198, 41–53. doi: 10.1016/j.gexplo.2018.12.002. |
Liu YG, Li WY, Jia QZ, Zhang ZW, Wang ZA, Zhang ZB, Zhang JW, Qian B. 2018. The dynamic sulfide saturation process and a possible Slab Break-off Model for the giant Xiarihamu Magmatic Nickel Ore Deposit in the East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau, China. Economic Geology, 113(6), 1383–1417. doi: 10.5382/econgeo.2018.4596. |
Liu YJ, Genser J, Neubauer F, Jin W, Ge XH, Handler R, Takasu A. 2005. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics, 398(3−4), 199–224. doi: 10.1016/j.tecto.2005.02.007. |
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51, 537–571. doi: 10.1093/petrology/egp082. |
Liu ZQ, Pei XZ, Li RB, Li ZC, Zhang XF, Liu ZG, Chen GC, Chen YX, Ding SP. 2011. LA-ICP-MS zircon U-Pb geochronology of the two suites of ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and its tectonic implication. Acta Geologica Sinica. 85 (2), 185–194 (in Chinese with English abstract). doi: CNKI:SUN:DZXE.0.2011-02-005. |
Lu L, Wu ZH, Hu DG, Barosh JP, Hao S, Zhou CJ. 2010. Zircon U-Pb ages for rhyolite of the Maoniushan Formation and its tectonic significance in the east Kunlun Mountains. Acta Petrologica Sinica, 26(4), 1150–1158 (in Chinese with English abstract). |
Ludwig KR. 2003. Users Manual For Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication No, 25–32. |
Ma CQ, Xiong FH, Yin S, Wang LX, Gao K. 2015. Intensity and cyclicity of orogenic magmatism: An example from a Paleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12), 3555–3568 (in Chinese with English abstract). |
Mavrogenes JA, O’Neill HSC. 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochimica et Cosmochimica Acta, 63(7-8), 1173–1180. doi: 10.1016/s0016–7037(98)00289–0. |
Meng FC, Cui MH, Jia LH, Ren YF, Feng HB. 2015a. Paleozoic continental collision of the East Kunlun orogen: Evidence from protoliths of the eclogites. Acta Petrologica Sinica, 31(12), 3581–3594 (in Chinese with English abstract). |
Meng FC, Cui MH, Wu XK, Ren YF. 2015b. Heishan mafic–ultramafic rocks in the Qimantag area of Eastern Kunlun, NW China: Remnants of an Early Paleozoic incipient island arc. Gondwana Research, 27(2), 745–759. doi: 10.1016/j.gr.2013.09.023. |
Meng FC, Cui MH, Wu XK, Wu JF, Wang JF. 2013a. Magmatic and metamorphic events recorded in granitic gneisses form the Qimantag, East Kunlun Mountains, Northwest China. Acta Petrologica Sinica, 29(6), 2107–2122 (in Chinese with English abstract). |
Meng FC, Zhang JX, Cui MH. 2013b. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance. Gondwana Research, 23, 825–836. doi: 10.1016/j.gr.2012.06.007. |
Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4), 321–355. doi: 10.2475/ajs.274.4.321. |
Mo XX, Luo ZH, Deng JF, Yu XH, Liu CD, Chen HW, Yuan WM, Liu YH. 2007. Granitoids and crustal growth in the east Kunlun orogenic belt. Geological Journal of China University, 13(3), 403–414 (in Chinese with English abstract). doi: 10.16108/j.issn1006-7493.2007.03.004. |
Naldrett AJ. 1997. Key factors in the genesis of Noril'sk, Sudbury, Jinchuan, Voisey's Bay and other world-class Ni-Cu-PGE deposits: Implications for exploration. Australian Journal of Earth Sciences, 44(3), 283–315. doi: 10.1080/08120099708728314. |
Pál-Molnár E, Batki A, Almási E, Kiss B, Upton BGJ, Markl G, Odling N, Harangi S. 2015. Origin of mafic and ultramafic cumulates from the Ditrău Alkaline Massif, Romania. Lithos, 239, 1–18. doi: 10.1016/j.lithos.2015.09.022. |
Pan YS, Zhou WM, Xu RM, Wang DA, Zhang YQ, Xie YW, Chen TG, Luo H. 1996. Geological characteristics and evolution of the Kunlun Mountains region during the early Paleozoic. Science in China Ser D, 39(4), 337–347. |
Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4), 14–48. doi: 10.1016/j.lithos.2007.06.016. |
Pearce JA, Peate DW. 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23(1), 251–285. doi: 10.1146/annurev.ea.23.050195.001343. |
Peng B, Sun FY, Li BL, Wang G, Li SJ, Zhao TF, Li L, Zhi YB. 2016. The geochemistry and geochronology of the Xiarihamu II mafic–ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni–Cu sulfide deposits. Ore Geology Reviews, 73, 13–28. doi: 10.1016/j.oregeorev.2015.10.014. |
Ren JH, Liu YQ, Qiao F, Han WZ. 2009. LA-ICP-MS U-Pb zircon dating and geochemical characteristics of diabase-dykes from the Qingshuiquan area, eastern Kunlun orogenic belt. Acta Petrologica Sinica, 25(5), 1135–1145 (in Chinese with English abstract). |
Ripley EM, Park YR, Li CS, Naldrett AJ. 1999. Sulfur and oxygen isotopic evidence of country rock contamination in the Voisey`s Bay Ni-Cu-Co deposit, Labrador, Canada. Lithos, 47, 53–68. doi: 10.1016/S0024–4937(99)00007–9. |
Ross JR and Travis GA. 1981. The nickel sulfide deposits of Western Australia in global perspective. Economic Geology, 76(6), 1291–1329. doi: 10.2113/gsecongeo.76.6.1291. |
Shao FL, Niu YL, Liu Y, Chen S, Kong JJ, Duan M. 2017. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos, 282–283, 33–44. doi: 10.1016/j.lithos.2017.03.002. |
Song XY, Wang KY, Barnes SJ, Yi JN, Chen LM, Schoneveld LE. 2020. Petrogenetic insights from chromite in ultramafic cumulates of the Xiarihamu intrusion, northern Tibet Plateau, China. American Mineralogist, 105(4), 479–497. doi: 10.2138/am–2020–7222. |
Song XY, Yi JN, Chen LM, She YW, Liu CZ, Dang XY, Yang QA, Wu SK. 2016. The giant Xiarihamu Ni-Co sulfide deposit in the East Kunlun Orogenic Belt, Northern Tibet Plateau, China. Economic Geology, 111, 29–55. doi: 10.2113/econgeo.111.1.29. |
Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts; Implications for mantle composition and processes. Geological Society London Special Publications, 42(1), 313–345. doi: 10.1144/GSL.SP.1989.042.01.19. |
Vervoort JD, Kemp AIS. 2016. Clarifying the zircon Hf isotope record of crust–mantle evolution. Chemical Geology, 425, 65–75. doi: 10.1016/j.chemgeo.2016.01.023. |
Wang BZ, Jing C, Luo ZH, Chen FB, Tao W, Guo GE. 2014. Spatial and temporal distribution of Late Permian-Early Jurassic intrusion assemblages in eastern Qimantag, East Kunlun, and their tectonic settings. Acta Petrologica Sinica, 30(11), 3213–3228 (in Chinese with English abstract). |
Wang CY, Zhang ZW, Zhang CJ, Chen CH, Li Y, Qian B. 2021. Constraints on sulfide saturation by crustal contamination in the Shitoukengde Cu-Ni deposit, East Kunlun orogenic belt, northern Qinghai-Tibet Plateau, China. Geosciences Journal, 25(3), 401–415. doi: 10.1007/s12303–020–0025–8. |
Wang G, Sun FY, Li BL, Li SJ, Zhao JW, Ao C, Yang QA. 2014. Zircon U-Pb geochronology and geochemistry of the mafic-ultramafic intrusion in Xiarihamu Cu-Ni deposit from East Kunlun, with implications for geodynamic setting. Earth Science Frontiers (China University of Geosciences (Beijing); Peking University), 21(6), 381–401 (in Chinese with English abstract). doi: 10.13745/j.esf.2014.06.036. |
Wang GC, Chen NS, Zhu YH, Zhang KX. 2003. Late Caledonian Ductile Thrusting Deformation in the Central East Kunlun Belt, Qinghai, China and its significance: evidence from geochronology. Acta Geologica Sinica, 77(3), 311–319 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2003.tb00747.x. |
Wang GC, Wang QH, Jian P, Zhu YH. 2004a. Zircon SHRIMP ages of Precambrian metamorphic basement rocks and their tectonic significance in the eastern Kunlun Mountains, Qinghai Province, China. Earth Science Frontiers, 11, 481–490 (in Chinese with English abstract). doi: 10.1007/BF02873097. |
Wang GC, Wei QR, Jia CX, Zhang KX, Li DW, Zhu YH, Xiang SY. 2007. Some ideas of Precambrian Geology in the East Kunlun, China. Geological Bulletin of China, 26, 929–937 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2007.08.003. |
Wang KL, Chung SL, O’Relly SY, Sun SS, Shinjo R, Chen CH. 2004b. Geochemical Constraints for the Genesis of Post-collisional Magmatism and the Geodynamic Evolution of the Northern Taiwan Region. Journal of Petrology, 45(5), 975–1011. doi: 10.1093/petrology/egh001. |
Wang YL, Zhang ZW, Zhang JW, Qian B, Liu YG, You MX. 2017. Early Mesozoic mantle-derived magmatic events and their geological significance in the East Kunlun orogenic belt. Geology & Exploration, 53(5), 855–866 (in Chinese with English abstract). doi: 10.13712/j.cnki.dzykt.2017.05.003. |
Wang YS, Chen JN. 1987. Metamorphic Zone and Metamorphism in Qinghai Province and its Adjacent Areas. Geological Publishing House, Beijing, 1–248 (in Chinese). |
Wei B, Wang CY, Li CS and Sun YL. 2013. Origin of PGE-Depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No. 7 orthopyroxenite intrusion, Central Asian Orogenic Belt, Northeastern China. Economic Geology, 108(8), 1813–1831. doi: 10.2113/econgeo.108.8.1813. |
Woodhead JD, Hergt JM, Davidson JP, Eggins SM. 2001. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth and Planetary Science Letters, 192, 331–346. doi: 10.1016/S0012–821X(01)00453–8. |
Wu FY, Li XH, Zheng YF, Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2), 185–220 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0569.2007.02.001. |
Wu FY, Yang YH, Xie LW, Yang JH, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1–2), 105–126. doi: 10.1016/j.chemgeo.2006.05.003. |
Wu GJ, Xiao XC, Li TD. 1989. The Yadong-Golmud geoscience section on the Qinghai-Tibet plateau. Acta Geological Sinica, 63, 285–296 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.1989.04.001. |
Wu LR. 1963. Metallogenic specialization of mafic-ultramafic rocks of China. Scientia Geologica Sinica, 1, 29–41. |
Xia R, Deng J, Qing M, Li WL, Guo XD, Zeng GZ. 2017. Petrogenesis of ca. 240 Ma intermediate and felsic intrusions in the Nan’getan: Implications for crust–mantle interaction and geodynamic process of the East Kunlun Orogen. Ore Geology Reviews, 90, 1099–1117. doi: 10.1016/j.oregeorev.2017.04.002. |
Xie W, Song XY, Deng YF, Wang YS, Ba DH, Zheng WQ, Li XB. 2012. Geochemistry and petrogenetic implications of a Late Devonian mafic–ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt. Lithos, 144–145, 209–230. doi: 10.1016/j.lithos.2012.03.010. |
Xiong FH, Ma CQ, Jiang HA, Liu B, Huang J. 2013. Geochronology and geochemistry of Middle Devonian mafic dykes in the East Kunlun orogenic belt, Northern Tibet Plateau: Implications for the transition from Prototethys to Paleotethys orogeny. Chemie der Erde-Geochemistry, 74(2), 225–235. doi: 10.1016/j.chemer.2013.07.004. |
Xiong Q, Zheng JP, Griffin WL, O'Reilly SY, Pearson NJ. 2012. Decoupling of U-Pb and Lu-Hf isotopes and trace elements in zircon from the UHP North Qaidam orogen, NE Tibet (China): Tracing the deep subduction of continental blocks. Lithos, 155, 125–145. doi: 10.1016/j.lithos.2012.08.022. |
Xu ZQ, Yang JS, Jiang M, Li HB, Xue GQ, Yuan XC, Qian H. 2001. Deep structure and lithospheric shear faults in the East Kunlun-Qiangtang region, northern Tibetan Plateau. Science in China. Series D, Earth Sciences, 1–9. doi: 10.1007/BF02911965. |
Xu ZQ, Yang JS, Li HB, Yao JX. 2006. The Early Palaeozoic terrene framework and the formation of the High-Pressure (HP) and Ultra-High Pressure (UHP) Metamorphic Belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12), 1793–1806 (in Chinese with English abstract). doi: 10.1111/j.1745-4557.2006.00081.x. |
Xu ZQ, Yang JS, Li HB, Zhang JX, Wu CL. 2007. Orogenic Plateau: Terrane Amalgamation, Collision and Uplift in the Qinghai-Tibet Plateau, Geological Publishing House, Beijing, 1–458 (in Chinese). |
Yan JM, Sun FY, Li L, Yang YQ, Zhang DX. 2018. A slab break-off model for mafic–ultramafic igneous complexes in the East Kunlun Orogenic Belt, northern Tibet: insights from early Palaeozoic accretion related to post-collisional magmatism. International Geology Review, 1–18. doi: 10.1080/00206814.2018.1501618. |
Yan JM. 2017. Study on Geological Characteristics and Genesis of Akechukesai Copper-Nickel Deposit in East kunlun, Qinghai Province. Changchun, Jilin University, Master Thesis, 1–63 (in Chinese with English abstract). |
Yang HH, Wang Q, Li YB, Lin B, Song Y, Wang YY, He W, Li HW, Li S, Li JL, Liu CC, Feng SB, Xin T, Fu XL, Liang XJ, Zhang Q, Wang BQ, Li Y. 2022. Geology and mineralization of the Tiegelongnan supergiant porphyry-epithermal Cu (Au, Ag) deposit (10 Mt) in western Tibet, China: A review. China Geology, 5(1), 136–159. doi: 10.31035/cg2022001. |
Yang JS, Robinson PT, Jiang CF, Xu ZQ. 1996. Ophiolites of the Kunlun Mountains, China and their tectonic implications. Tectonophysics, 258(1–4), 215–231. doi: 10.1016/0040–1951(95)00199–9. |
Yuan SD, Peng JT, Hao S, Li HM, Geng JZ, Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin–polymetallic mineralization. Ore Geology Reviews, 43(1), 235–242. doi: 10.1016/j.oregeorev.2011.08.002. |
Zhang JX, Yu SY, Li YS, Yu XX, Lin YH, Mao XH. 2015. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision on oregeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrologica Sinica, 31(12), 3531–3554 (in Chinese with English abstract). |
Zhang YL, Hu DG, Shi YR, Lu L. 2010. SHRIMP zircon U-Pb ages and tectonic significance of Maoniushan Formation volcanic rocks in East Kunlun orogenic belt, China. Geological Bulletin of China, 29(11), 1614–1618 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.11.003. |
Zhang ZW, Li WY, Qian B, Wang YL, Li SJ, Liu CZ, Zhang JW, Yang QA, You MX and Wang ZA. 2015. Metallogenic epoch of the Xiarihamu magmatic Ni-Cu sulfide deposit in eastern Kunlun orogenic belt and its prospecting significance. Geology in China, 42(3), 438–451 (in Chinese with English abstract). |
Zhang ZW, Wang CY, Qian B, Li WY. 2018a. The geochemistry characteristics of Silurian gabbro in East Kunlun Orogenic Belt and its mineralization relationship with magmatic Ni-Cu sulfide deposit. Acta Petrologica Sinica, 34(8), 2262–2274 (in Chinese with English abstract). |
Zhang ZW, Wang YL, Qian, B, Li WY. 2017. Zircon SHRIMP U-Pb age of the Binggounan magmatic Ni-Cu deposit in East Kunlun Mountains and its tectonic implications. Acta Geologica Sinica, 91(4), 724–735 (in Chinese with English abstract). doi: 10.3799/dqkx.2018.588. |
Zhang ZW, Wang YL, Qian B, Liu YG, Zhang DY, Lü PR, Dong J. 2018b. Metallogeny and tectonomagmatic setting of Ni-Cu magmatic sulfide mineralization, number I Shitoukengde mafic-ultramafic complex, East Kunlun Orogenic Belt, NW China. Ore Geology Reviews, 96, 236–246. doi: 10.1016/j.oregeorev.2018.04.027. |
Zhao ZM, Ma HD, Wang BZ, Bai YS, Li RS, Ji WH. 2008. The evidence of Intrusive Rocks obout Collision-Orogeny during Early Devonian in Eastern Kunlun Area. Geological Review, 54(1), 47–56 (in Chinese with English abstract). doi: 10.16509/j.georeview.2008.01.007. |
Zheng YF, Chen RX, Zhang SB, Tang J, Zhao ZF, Wu YB. 2007. Zircon Lu-Hf isotope study of ultrahigh-pressure eclogite and granitic gneiss in the Daie orogen. Acta Petrologica Sinica, 23(2), 317–330 (in Chinese with English abstract). |
Zhou W, Wang BY, Xia MZ, Xia ZD, Jiang CY, Dong J, Xie ES. 2016. Mineralogical charocteristics of Shitoukengde mafic-ultramafic intrusion and analysis of its metallogenic potential, East Kunlun. Acta Petrologica Et Mineralogica, 35(1), 81–96 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2016.01.006. |
Zhu YH, Zhang KX, Chen NS, Wang GC, Hou GJ. 1999. Determination of different ophiolitic belts in eastern Kunlun orogenic zone and their tectonic significance. Earth Science-Journal of China University of Geosciences, 24(2), 134–138 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.1999.02.006. |
Geological sketch map of the Altyn–Qilian–North Qaidam orogenic system in the northern Qinghai-Tibet Plateau (modified from Zhang JX et al., 2015). CAOB–Central Asian Orogenic Belt; NQL–North Qilian subduction-accretion complex belt; QLB–Qilian Block; NQD–North Qaidam subduction-collision complex; WQOB–West Qingling Orogenic Belt; NAT–North Altyn subduction-accretion complex belt; CAB–Central Altyn Block; SAT–South Altyn subduction-collision complex; NEKT–North East Kunlun Terrane; CEKF–Central East Kunlun Fault; SEKT–South East Kunlun Terrane; BY-SG–Bayan Har-Songpan-Ganzi Terrane; QT–Qiangtang Terrane; LS–Lhasa Terrane; HM–Himalaya Terrane; SWKT–South West Kunlun Terrane; NWKT–North West Kunlun Terrane.
a–Sketch geological map of the STKD intrusion (modified from Zhou W et al., 2016); b–map and cross sections of the STKD intrusion.
Outcrop of the STKD intrusion. a–outcrop of mafic-ultramafic rocks; b–intrusive contact relationship between mafic-ultramafic rocks and marble Outcrop of mafic-ultramafic rocks; c–intrusive irregular shape gabbro rocks in marble of Jinshuikou Group; d–gradational relationship between orthopyroxenite and troctolite.
Microphotographs of mafic-ultramafic rocks and ores in the STKD intrusion.
CL images of zircons from troctolite in the STKD intrusion.
Zircons U-Pb concordia diagram and weighted average ages diagram for troctolite.
a–AFM diagram of STKD intrusion (Coleman RG, 1977); b–SiO2-TFeO/MgO diagram of STKD intrusion (Miyashiro A, 1974).
a–Chondrite-normalized REE patterns of the STKD intrusion; b–primitive mantle-normalized element spider diagram of the STKD intrusion (The primitive mantle and chondrite data are from Sun SS and McDonough WF (1989). Data of gabbro, pyroxenite and peridotite from XRHM (XRHM) are from Wang G et al.(2014) and Jiang CY et al.(2015).
Zircon Hf isotopic features for gabbro in STKD intrusion. Gabbro and Ol-websterite data are from Jia LH et al. (2021). XRHM (Xiarihmau) mafic-ultramafic rocks data are from Wang G et al. (2014) and Jiang CY et al. (2015).
Plots of selected trace elements for checking contamination of STKD intrusion. XRHM mafic-ultramafic rocks data are from Wang G et al. (2014) and Jiang CY et al. (2015).
Nb/Yb vs. Th/Yb(a), Th/Nb vs. Ba/Th(b), Th/Zr vs. Nb/Zr(c) diagrams of the STKD intrusion (a after Pearce JA, 2008; b after Hanyu T et al., 2006; c after Woodhead JD et al., 2001). The legends and data sources are consistent with Fig. 9.