Citation: | Fan Yang, Jing-wen Mao, Wei-dong Ren, Jia-run Tu, Gilby Jepson, Si-yuan Meng, Zhi-min Wang, 2024. In situ U-Pb dating and trace elements of magmatic rutile from Mujicun Cu-Mo deposit, North China Craton: Insights into porphyry mineralization, China Geology, 7, 730-746. doi: 10.31035/cg2023038 |
Porphyry Cu (Mo-Au) deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings, whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generated within intra-continental settings. Although previous studies have focused on the age, origin and ore genesis of the Mujicun deposit, the ore-forming age, magma source and tectonic evolution remain controversial. Here, this study targeted rutile (TiO2) in the ore-hosting diorite porphyry from the Mujicun Cu-Mo deposit to conduct in situ U-Pb dating and trace element composition studies, with major views to determine the timing and magma evolution and to provide new insights into porphyry Cu-Mo metallogeny. Rutile trace element data show flat-like REE patterns characterized by relatively enrichment LREEs and depleted HREEs, which could be identified as magmatic rutile. Rutile U-Pb dating yields lower intercept ages of 139.3–138.4 Ma, interpreted as post magmatic cooling timing below about 500°C, which are consistent or slightly postdate with the published zircon U-Pb ages of diorite porphyry (144.1–141.7 Ma) and skarn (146.2 Ma; 139.9 Ma) as well as the molybdenite Re-Os ages of molybdenum ores (144.8–140.0 Ma). Given that the overlap between the closure temperature of rutile U-Pb system and ore-forming temperature of the Mujicun deposit, this study suggests that the ore-forming ages of the Mujicun deposit can be constrained at 139.3–138.4 Ma, with temporal links to the late large-scale granitic magmatism at 138–126 Ma in the Taihang Orogen. Based on the Mg and Al contents in rutile, the magma of ore-hosting diorite porphyry was suggested to be derived from crust-mantle mixing components. In conjunction with previous studies in Taihang Orogen, this study proposes that the far-field effect and the rollback of the subducting Paleo-Pacific slab triggered lithospheric extension, asthenosphere upwelling, crust-mantle interaction and thermo-mechanical erosion, which jointly facilitated the formation of dioritic magmas during the Early Cretaceous. Subsequently, the dioritic magmas carrying crust-mantle mixing metallic materials were emplaced and precipitated at shallow positions along NNE-trending ore-controlling faults, eventually resulting in the formation of the Mujicun Cu-Mo deposit within an intra-continental extensional setting.
Agangi A, Reddy SM, Plavsa D, Fougerouse D, Clark C, Roberts M, Johnson TE. 2019. Antimony in rutile as a pathfinder for orogenic gold deposits. Ore Geology Reviews, 106, 1–11. doi: 10.1016/j.oregeorev.2019.01.018. |
Asadi S, Moore F, Zarasvandi, A. 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth-Science Reviews, 138, 25–46. doi: 10.1016/j.earscirev.2014.08.001. |
Barra F, Ruiz J, Mathur R, Titley S. 2003. A Re-Os study of sulfide minerals from the Bagdad porphyry Cu-Mo deposit, northern Arizona, USA. Mineralium Deposita, 38, 585–596. doi: 10.1007/s00126-002-0341-0. |
Barth MG, McDonough WF, Rudnick RL. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical geology, 165, 197–213. doi: 10.1016/S0009-2541(99)00173-4. |
Bertrand G, Guillou-Frottier L, Loiselet C. 2014. Distribution of porphyry copper deposits along the western Tethyan and Andean subduction zones: Insights from a paleotectonic approach. Ore Geology Reviews, 60, 174–190. doi: 10.1016/j.oregeorev.2013.12.015. |
Berzina AN, Sotnikov VI, Economou-Eliopoulos M, Eliopoulos DG. 2005. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews, 26, 91–113. doi: 10.1016/j.oregeorev.2004.12.002. |
Bibikova E, Skiöld T, Bogdanova S, Gorbatschev R, Slabunov A. 2001. Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield. Precambrian Research, 105, 315–330. doi: 10.1016/S0301-9268(00)00117-0. |
Cai JH, Wang LB, Li JP. 2008. Mineralogical features of rutiles of different modes of occurrence and genetic types and their research significance. Mineral Deposits, 27, 531–538 (in Chinese with English abstract). |
Cai JH, Yan GH, Chang GS, Wang XF, Shao HX, Chu ZY. 2003. Petrological and geochemical characteristics of the Wanganzhen complex and discussion on its genesis. Acta Petrologica sinica, 19, 81–92 (in Chinese with English abstract). |
Cannell J, Cooke DR, Walshe JL, Stein H. 2005. Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit. Economic Geology, 100, 979–1003. doi: 10.2113/gsecongeo.100.5.979. |
Chen B, Tian W, Zhai M. 2005. Zircon U-Pb geochronology and geochemistry of the Mesozoic magmatism in the Taihang Mountains and other places of the North China craton, with implications for petrogenesis and geodynamic setting. Acta Petrologica Sinica, 21, 13–24 (in Chinese with English abstract). |
Chen C, Wang BD, Niu SY, Ma GX, Zhang JZ, Sun AQ, Ma BJ, Chen ZK, Zhang FX, Wang ZL. 2013. Re-Os dating of molybdenite from the Mujicun Cu (-Mo) deposit in Hebei Province and characteristics of the ore-forming fluids. Geology in China, 40, 1889–1901 (in Chinese with English abstract). |
Chen C, Wang BD, Niu SY, Zhang FX, Ma BJ, Zhang JZ, Sun AQ, Wang HT, Ma GX, Chen ZK, Wang ZL. 2015. Discussion on the Ore-forming material sources of Mujicun copper (Molybdenite) polymetallic orefield in Laiyuan County, Hebei Province, China. Journal of Jilin University:Earth Science Edition, 45, 106–118 (in Chinese with English abstract). |
Cherniak DJ. 2000. Pb diffusion in rutile. Contributions to Mineralogy and Petrology, 139, 198–207. doi: 10.1007/PL00007671. |
Cherniak DJ, Watson EB. 2001. Pb diffusion in zircon. Chemical Geology, 172, 5–24. doi: 10.1016/S0009-2541(00)00233-3. |
Clark JR, Williams-Jones AE. 2004. Rutile as a potential indicator mineral for metamorphosed metallic ore deposits. Rapport Final de DIVEX, Sous-projet SC2, Montréal, Canada, 17. |
Cluzel D, Aitchison JC, Zhou R, Ireland T, Heizler M, Patias D, Lesimple S, Maurizot P, Teyssier C. 2022. Direct dating of podiform Chromitite: U-Pb (Zircon, Rutile) and 40Ar/39Ar (Pargasite) evidence from Tiébaghi Cr deposit (New Caledonia). Ore Geology Reviews, 145, 104873. doi: 10.1016/j.oregeorev.2022.104873. |
Dong GC, Santosh M, Li SR, Shen JF, Mo XX, Scott S, Qu K, Wang X. 2013. Mesozoic magmatism and metallogenesis associated with the destruction of the North China Craton: evidence from U–Pb geochronology and stable isotope geochemistry of the Mujicun porphyry Cu-Mo deposit. Ore Geology Reviews, 53, 434–445. doi: 10.1016/j.oregeorev.2013.02.006. |
Duan C, Mao J, Xie G, Chen Z, Ma G, Wang Z, Chen T, Li W. 2016. Zircon U-Pb geochronological and Hf isotope study on Tiaojishan volcanic Formation, Mujicun, North Taihang Mountain and implications for regional metallogeny and magmatism. Acta Geologica Sinica, 90, 250–266 (in Chinese with English abstract). doi: 10.1111/1755-6724.13004. |
Edwards PM. 2002. Origin 7. 0:scientific graphing and data analysis software. Journal of chemical information and computer sciences, 42, 1270–1271. doi: 10.1021/ci0255432. |
Ferry JM, Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154, 429–437. doi: 10.1007/s00410-007-0201-0. |
Gao YF, Santosh M, Wei RH, Ma GX, Chen ZK, Wu JL. 2013. Origin of high Sr/Y magmas from the northern Taihang Mountains: implications for Mesozoic porphyry copper mineralization in the North China Craton. Journal of Asian Earth Sciences, 78, 143–159. doi: 10.1016/j.jseaes.2012.10.040. |
Gao YF, Wei RH, Hou ZQ, Ma GX, Zhao RS, Chen ZK, Wu JL, Peng YX, Gao M. 2011. Mujicun porphyry copper mineralization: response to Mesozoic thinning of lithosphere in North China Craton. Mineral Deposits, 30, 890–902 (in Chinese with English abstract). |
Hou T, Zhang Z, Keiding JK, Veksler IV. 2015. Petrogenesis of the ultrapotassic Fanshan intrusion in the North China Craton: implications for lithospheric mantle metasomatism and the origin of apatite ores. Journal of Petrology, 56, 893–918. doi: 10.1093/petrology/egv021. |
Hou Z, Xiao Y, Shen J, Yu C. 2020. In situ rutile U-Pb dating based on zircon calibration using LA-ICP-MS, geological applications in the Dabie orogen, China. Journal of Asian Earth Sciences, 192, 104261. doi: 10.1016/j.jseaes.2020.104261. |
Hou ZQ, Li QY, Gao YF, Lu YJ, Yang ZM, Wang R, Shen ZC. 2015. Lower-crustal magmatic hornblendite in North China Craton: Insight into the genesis of porphyry Cu deposits. Economic Geology, 110, 1879–1904. doi: 10.2113/econgeo.110.7.1879. |
Hou ZQ, Ma H, Khin Z, Zhang Y, Wang M, Wang Z, Pan G, Tang R. 2003. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet. Economic Geology, 98, 125–145. doi: 10.2113/gsecongeo.98.1.125. |
Hou ZQ, Yang ZM, Qu XM, Meng XJ, Li ZQ, Beaudoin G, Rui ZY, Gao YF, Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews, 36, 25–51. doi: 10.1016/j.oregeorev.2008.09.006. |
Huang XL, Zhong JW, Xu YG. 2012. Two tales of the continental lithospheric mantle prior to the destruction of the North China Craton: Insights from Early Cretaceous mafic intrusions in western Shandong, East China. Geochimica et Cosmochimica Acta, 96, 193–214. doi: 10.1016/j.gca.2012.08.014. |
Jochum KP, Pfander J, Snow JE, Hofmann AW. 1997. Nb/Ta in mantle and crust. Eos, 78, 804. |
Kamber BS, Collerson KD. 2000. Role of ‘hidden’ deeply subducted slabs in mantle depletion. Chemical Geology, 166, 241–254. doi: 10.1016/S0009-2541(99)00218-1. |
Lan TG, Fan HR, Santosh M, Hu FF, Yang KF, Yang YH, Liu Y. 2012. Early Jurassic high-K calc-alkaline and shoshonitic rocks from the Tongshi intrusive complex, eastern North China Craton: implication for crust–mantle interaction and post-collisional magmatism. Lithos, 140, 183–199. doi: 10.1016/j.lithos.2012.01.015. |
Larsen ES. 1929. The temperatures of magmas. American Mineralogist: Journal of Earth and Planetary Materials, 14, 81–94. |
Li D, Zhang ST, Yan CH, Wang GW, Song YW, Ma ZB, Han JW. 2012. Late Mesozoic time constraints on tectonic changes of the Luanchuan Mo belt, East Qinling orogen, Central China. Journal of Geodynamics, 61, 94–104. doi: 10.1016/j.jog.2012.02.005. |
Li Q, Li S, Zheng YF, Li H, Massonne HJ, Wang Q. 2003. A high precision U-Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China: a new constraint on the cooling history. Chemical Geology, 200, 255–265. doi: 10.1016/S0009-2541(03)00194-3. |
Li SR, Santosh M. 2017. Geodynamics of heterogeneous gold mineralization in the North China Craton and its relationship to lithospheric destruction. Gondwana Research, 50, 267–292. doi: 10.1016/j.gr.2017.05.007. |
Li SR, Santosh M, Zhang HF, Shen JF, Dong GC, Wang JZ, Zhang JQ. 2013. Inhomogeneous lithospheric thinning in the central North China Craton: zircon U-Pb and S-He-Ar isotopic record from magmatism and metallogeny in the Taihang Mountains. Gondwana Research, 23, 141–160. doi: 10.1016/j.gr.2012.02.006. |
Li WC, Zhang XF, Yu HJ, Tao D, Liu XL. 2022. Geology and mineralization of the Pulang supergiant porphyry copper deposit (5.11 Mt) in Shangri-la, Yunnan Province, China: A review. China Geology, 5(4), 662–695. doi: 10.31035/cg2022060. |
Lin B, Tang JX, Tang P, Zheng WB, Song Y, Li FQ, Leng QF, Wang ZC, Qi J, Sun M, Bello Rodríguez JD. 2023. Geology, geochronology, and exploration of the Jiama giant porphyry copper deposit (11 Mt), Tibet, China: A review. China Geology, 6(2), 338–357. doi: 10.31035/cg2023031. |
Liu J, Zhao Y, Liu X, Wang Y, Liu X. 2012. Rapid exhumation of basement rocks along the northern margin of the North China craton in the early Jurassic: Evidence from the Xiabancheng Basin, Yanshan Tectonic Belt. Basin Research, 24, 544–558. doi: 10.1111/j.1365-2117.2011.00538.x. |
Ma G. 1997. Geological characteristics and metallogenic model of copper deposit at Muji Village of Laiyuan County, Hebei Province. Journal of Geology and Mineral Resources of North China, 12, 52–66 (in Chinese with English abstract). |
Malkovets VG, Rezvukhin DI, Belousova EA, Griffin WL, Sharygin IS, Tretiakova IG, Gibsher AA, O’Reilly SY, Kuzmin DV, Litasov KD, Logvinova AM, Pokhilenke NP, Sobolev NV. 2016. Cr-rich rutile: A powerful tool for diamond exploration. Lithos, 265, 304–311. doi: 10.1016/j.lithos.2016.08.017. |
Mao J, Liu P, Goldfarb RJ, Goryachev NA, Pirajno F, Zheng W, Zhou M, Zhao C, Xie G, Yuan S, Liu M. 2021a. Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension, East Asia. Ore Geology Reviews, 136, 104270. doi: 10.1016/j.oregeorev.2021.104270. |
Mao J, Pirajno F, Lehmann B, Luo M, Berzina A. 2014. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. Journal of Asian Earth Sciences, 79, 576–584. doi: 10.1016/j.jseaes.2013.09.002. |
Mao J, Zheng W, Xie G, Lehmann B, Goldfarb R. 2021b. Recognition of a Middle-Late Jurassic arc-related porphyry copper belt along the southeast China coast: Geological characteristics and metallogenic implications. Geology, 49, 592–596. doi: 10.1130/G48615.1. |
Mao JW, Xie GQ, Yuan SD, Liu P, Meng XY, Zhou ZH, Zheng W. 2018. Current research progress and future trends of porphyry-skarn copper and granite-related tin polymetallic deposits in the Circum Pacific metallogenic belts. Acta Petrologica Sinica, 34, 2501–2517 (in Chinese with English abstract). |
Mao JW, Zhang Z, Zhang Z, Du A. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance. Geochimica et Cosmochimica Acta, 63, 1815–1818. doi: 10.1016/S0016-7037(99)00165-9. |
McDonough WF. 1991. Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology. Philosophical Transactions of the Royal Society of London. Series A:Physical and Engineering Sciences, 335, 407–418. doi: 10.1098/rsta.1991.0055. |
McDonough WF, Sun SS. 1995. The composition of the Earth. Chemical geology, 120, 223–253. doi: 10.1016/0009-2541(94)00140-4. |
Meinhold G. 2010. Rutile and its applications in earth sciences. Earth-Science Reviews, 102, 1–28. doi: 10.1016/j.earscirev.2010.06.001. |
Meisel T, Walker RJ, Irving AJ, Lorand JP. 2001. Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochimica et Cosmochimica Acta, 65, 1311–1323. doi: 10.1016/S0016-7037(00)00566-4. |
Mezger K, Hanson GN, Bohlen SR. 1989. High-precision U-Pb ages of metamorphic rutile: application to the cooling history of high-grade terranes. Earth and Planetary Science Letters, 96, 106–118. doi: 10.1016/0012-821X(89)90126-X. |
Munker C, Pfander JA, Weyer S, Buchl A, Kleine T, Mezger K. 2003. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics. Science, 301, 84–87. doi: 10.1126/science.108466. |
Müller RD, Sdrolias M, Gaina C, Steinberger B, Heine C. 2008. Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319, 1357–1362. doi: 10.1126/science.1151540. |
Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards newsletter, 21, 115–144. doi: 10.1111/j.1751-908X.1997.tb00538.x. |
Pi QH, Hu RZ, Xiong B, Li QL, Zhong RC. 2017. In situ SIMS U-Pb dating of hydrothermal rutile: reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China. Mineralium Deposita. 52, 1179–1190. doi: 10.1007/s00126-017-0715-y |
Porter JK, McNaughton NJ, Evans NJ, McDonald BJ. 2020. Rutile as a pathfinder for metals exploration. Ore Geology Reviews, 120, 103406. doi: 10.1016/j.oregeorev.2020.103406. |
Qu K. 2012. Geology and mineralization in Mujicun porphyry Cu-Mo deposit, Northern Taihang Mt., China. China University of Geosciences (Beijing), Master thesis, 1–78 (in Chinese with English abstract). |
Qu K, Dong GC, Li SR, Shen JF, Wang YJ, Wang X, Luo W. 2014. Lithogeochemistry and Sr-Nd-Pb isotopic characteristics of Mujicun porphyry Cu-Mo deposit in Taihang Mountains and their significance. Geoscience, 28, 449–460 (in Chinese with English abstract). |
Rabbia OM, Hernández LB, French DH, King RW, Ayers JC. 2009. The El Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective. Mineralium Deposita, 44, 849–866. doi: 10.1007/s00126-009-0252-4. |
Richards JP. 2022. Porphyry copper deposit formation in arcs: What are the odds? Geosphere, 18, 130–155. doi: 10.1130/GES02086.1 |
Rudnick RL, Barth M, Horn I, McDonough WF. 2000. Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science, 287, 278–281. doi: 10.1126/science.287.5451.278. |
Rudnick RL, Gao S, Holland HD, Turekian KK. 2003. Composition of the continental crust. The crust, 3, 1–64. |
Rui ZY, Hou ZQ, Qu XM, Zhang LS, Wang LS, Liu YL. 2003. Metallogenetic epoch of Gangdese porphyry copper belt and uplift of Qinghai-Tibet plateau. Mineral Deposits, 22, 217–225 (in Chinese with English abstract). |
Schirra M, Laurent O. 2021. Petrochronology of hydrothermal rutile in mineralized porphyry Cu systems. Chemical Geology, 581, 120407. doi: 10.1016/j.chemgeo.2021.120407. |
Schmidt MW, Dardon A, Chazot G, Vannucci R. 2004. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters, 226, 415–432. doi: 10.1016/j.jpgl.2004.08.010. |
Scott KM. 2005. Rutile geochemistry as a guide to porphyry Cu-Au mineralization, Northparkes, new South Wales, Australia. Geochemistry: Exploration, Environment, Analysis, 5, 247–253. doi: 10.1144/1467-7873/03-055. |
Scott KM, Radford NW. 2007. Rutile compositions at the Big Bell Au deposit as a guide for exploration. Geochemistry:Exploration, Environment, Analysis,7,353–361. doi: 10.1144/1467-7873/07-135. |
Shen JF, Li SR, Santosh M, Dong GC, Wang YJ, Liu HM, Peng ZD, Zhang ZY. 2015. Zircon U-Pb geochronology of the basement rocks and dioritic intrusion associated with the Fushan skarn iron deposit, southern Taihang Mountains, China. Journal of Asian Earth Sciences, 113, 1132–1142. doi: 10.1016/j.jseaes.2015.01.009. |
Shen ZC, Hou ZQ, Chen ZK, Li QY, Zhou YM, Wang ZM. 2015. Molybdenite Re-Os isotopic dating and zircon SHRIMP U-Pb and Hf isotopic compositions of the Mujicun porphyry deposit. Acta Petrologica et Mineralogica, 34, 526–538 (in Chinese with English abstract). |
Sillitoe RH. 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67, 184–197. doi: 10.2113/gsecongeo.67.2.184. |
Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105, 3–41. doi: 10.2113/gsecongeo.105.1.3. |
Smythe D, Schulze D, Brenan J. 2008. Rutile as a kimberlite indicator mineral: minor and trace element geochemistry. In International Kimberlite Conference: Extended Abstracts (Vol. 9). |
Sobolev NV, Yefimova ES. 2000. Composition and petrogenesis of Ti-oxides associated with diamonds. International Geology Review, 42, 758–767. doi: 10.1080/00206810009465110. |
Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313–345. doi: 10.1144/GSL.SP.1989.042.01.19 |
Sun W, Ding X, Hu YH, Li XH. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters, 262, 533–542. doi: 10.1016/j.jpgl.2007.08.021. |
Suzuki K, Shimizu H, Masuda A. 1996. Re-Os dating of molybdenites from ore deposits in Japan: Implication for the closure temperature of the Re-Os system for molybdenite and the cooling history of molybdenum ore deposits. Geochimica et Cosmochimica Acta, 60, 3151–3159. doi: 10.1016/0016-7037(96)00164-0. |
Tang M, Lee CTA, Chen K, Erdman M, Costin G, Jiang H. 2019. Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nature Communications, 10, 1–8. doi: 10.1038/s41467-018-08198-3. |
Vermeesch P. 2018. IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers, 9, 1479–1493. doi: 10.1016/j.gsf.2018.04.001. |
Vry JK, Baker JA. 2006. LA-MC-ICPMS Pb-Pb dating of rutile from slowly cooled granulites: confirmation of the high closure temperature for Pb diffusion in rutile. Geochimica et Cosmochimica Acta, 70, 1807–1820. doi: 10.1016/j.gca.2005.12.006. |
Wang Y, Li H. 2008. Initial formation and Mesozoic tectonic exhumation of an intracontinental tectonic belt of the northern part of the Taihang Mountain belt, eastern Asia. The Journal of Geology, 116, 155–172. doi: 10.1086/529153. |
Watson EB, Wark DA, Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413–433. doi: 10.1007/s00410-006-0068-5. |
Wu FY, Han RH, Yang JH, Wilde SA, Zhai MG, Park SC. 2007. Initial constraints on the timing of granitic magmatism in North Korea using U–Pb zircon geochronology. Chemical Geology, 238, 232–248. doi: 10.1016/j.chemgeo.2006.11.012. |
Wu FY, Lin JQ, Wilde SA, Yang JH. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233, 103–119. doi: 10.1016/j.jpgl.2005.02.019. |
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA, Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41, 1–30. doi: 10.1016/j.jseaes.2010.11.014. |
Wu JJ, Liu JC, Zhang HD, Hou LM, Zheng LH. 2014. Geological characteristics and their ore-forming material sources of Lianbaling Pb-Zn deposit in Taihang Mountains. Journal of Earth Sciences & Environment, 36 (in Chinese with English abstract). |
Xiao W, Li S, Santosh M, Jahn BM. 2012. Orogenic belts in Central Asia: Correlations and connections. Journal of Asian Earth Sciences, 49, 1–6. doi: 10.1016/j.jseaes.2012.03.001. |
Xiao X, Zhou T, White NC, Fan Y, Zhang L, Chen X. 2021. Porphyry Cu mineralization processes of Xinqiao deposit, Tongling ore district: Constraints from the geochronology and geochemistry of zircon, apatite, and rutile. Ore Geology Reviews, 138, 104340. doi: 10.1016/j.oregeorev.2021.104340. |
Xiao Y, Sun W, Hoefs J, Simon K, Zhang Z, Li S, Hofmann AW. 2006. Making continental crust through slab melting: constraints from niobium-tantalum fractionation in UHP metamorphic rutile. Geochimica et Cosmochimica Acta, 70, 4770–4782. doi: 10.1016/j.gca.2006.07.010. |
Xiao YL, Huang J, Liu L, Li DY. 2011. Rutile, an important “reservoir” for geochemical information. Acta Petrolagica Sinica, 27, 398–416 (in Chinese with English abstract). |
Xue F, Santosh M, Kim SW, Tsunogae T, Yang F. 2021. Thermo-mechanical destruction of Archean cratonic roots: Insights from the Mesozoic Laiyuan granitoid complex, North China Craton. Lithos, 400, 106394. doi: 10.1016/j.lithos.2021.106394. |
Xue F, Santosh M, Tsunogae T, Yang F. 2019. Geochemical and isotopic imprints of early cretaceous mafic and felsic dyke suites track lithosphere-asthenosphere interaction and craton destruction in the North China Craton. Lithos, 326, 174–199. doi: 10.1016/j.lithos.2018.12.013. |
Xue F, Wang G, Santosh M, Yang F, Shen Z, Kong L, Guo N, Zhang X, Jia, W. 2018. Geochemistry and geochronology of ore-bearing and barren intrusions in the Luanchuan ore fields of East Qinling metallogenic belt, China: diverse tectonic evolution and implications for mineral exploration. Journal of Asian Earth Sciences, 157, 57–77. doi: 10.1016/j.jseaes.2017.04.027. |
Yang J, Wu F. 2009. Triassic magmatism and its relation to decratonization in the eastern North China Craton. Science in China Series D:Earth Sciences, 52, 1319–1330. doi: 10.1007/s11430-009-0137-5. |
Yang F, Kim SW, Tsunogae T, Zhou H. 2021b. Multiple enrichment of subcontinental lithospheric mantle with Archean to Mesozoic components: Evidence from the Chicheng ultramafic complex, North China Craton. Gondwana Research, 94, 201–221. doi: 10.1016/j.gr.2021.03.005. |
Yang F, Santosh M, Glorie S, Jepson G, Xue F, Kim SW. 2020b. Meso-Cenozoic multiple exhumation in the Shandong Peninsula, eastern North China Craton: Implications for lithospheric destruction. Lithos, 370, 105597. doi: 10.1016/j.lithos.2020.105597. |
Yang F, Santosh M, Kim SW. 2018a. Mesozoic magmatism in the eastern North China Craton: Insights on tectonic cycles associated with progressive craton destruction. Gondwana Research, 60, 153–178. doi: 10.1016/j.gr.2018.04.003. |
Yang F, Santosh M, Kim SW, Zhou H. 2021a. Late Neoarchean to Paleoproterozoic arc magmatism in the Shandong Peninsula, North China Craton and its tectonic implications. Precambrian Research, 358, 106188. doi: 10.1016/j.precamres.2021.106188. |
Yang F, Santosh M, Kim SW, Zhou H, Jeong YJ. 2020a. Late Mesozoic intraplate rhyolitic volcanism in the North China Craton: Far-field effect of the westward subduction of the Paleo-Pacific Plate. GSA Bulletin, 132, 291–309. doi: 10.1130/B35123.1. |
Yang F, Santosh M, Kim SW, Zhou H, Xue F. 2019. Early Cretaceous adakitic granitoids from the Zhijiazhuang skarn iron deposit, North Taihang Mountain, China: Implications for petrogenesis and metallogenesis associated with craton destruction. Geological Journal, 54, 3189–3211. doi: 10.1002/gj.3320. |
Yang F, Santosh M, Tang L. 2018b. Extensive crustal melting during craton destruction: evidence from the Mesozoic magmatic suite of Junan, eastern North China Craton. Journal of Asian Earth Sciences, 157, 119–140. doi: 10.1016/j.jseaes.2017.07.010. |
Yang HH, Wang Q, Li YB, Lin B, Song Y, Wang YY, He W, Li HW, Li S, Li JL, Liu CC, Feng SB, Xin T, Fu XL, Liang XJ, Zhang Q, Wang BQ, Li Y. 2022. Geology and mineralization of the Tiegelongnan supergiant porphyry-epithermal Cu (Au, Ag) deposit (10 Mt) in western Tibet, China: A review. China Geology, 5(1), 136–159. doi: 10.31035/cg2022001. |
Yang ZM, Goldfarb R, Chang ZS. 2016. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate. Society of Economic Geologists Special Publication, 19, 279–300. doi: 10.5382/SP.19.11. |
Zack TV, Moraes RD, Kronz A. 2004a. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, 148, 471–488. doi: 10.1007/s00410-004-0617-8. |
Zack TV, Von Eynatten H, Kronz A. 2004b. Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology, 171, 37–58. doi: 10.1016/j.sedgeo.2004.05.009. |
Zhai MG, Santosh M. 2011. The early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Research, 20, 6–25. doi: 10.1016/j.gr.2011.02.005. |
Zhang JQ, Li SR, Santosh M, Wang JZ, Li Q. 2015. Mineral chemistry of high-Mg diorites and skarn in the Han-Xing Iron deposits of South Taihang Mountains, China: Constraints on mineralization process. Ore Geology Reviews, 64, 200–214. doi: 10.1016/j.oregeorev.2014.07.007. |
Zhang HD, Liu JC, Wang JY, Zhang SN, Hu B, Wang DQ, Han S. 2016. Petrology, geochronology and geochemistry characteristics of Wang’anzhen complex in the northern Taihang Mountain and their geological significance. Acta Petrologica Sinica, 32, 727–745 (in Chinese with English abstract). |
Zhang L, Wu JL, Tu JR, Wu D, Li N, Xia XP, Ren ZY. 2020. RMJG Rutile: A New Natural Reference Material for Microbeam U-Pb Dating and Hf Isotopic Analysis. Geostandards and Geoanalytical Research, 44, 133–145. doi: 10.1111/ggr.12304. |
Zhang SH, Zhao Y, Davis GA, Ye H, Wu F. 2014. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization. Earth-Science Reviews, 131, 49–87. doi: 10.1016/j.earscirev.2013.12.004. |
Zhang S, Ju N, Zhang GB, Zhao YD, Ren YS, Liu BS, Wang H, Guo RR, Yang Q, Sun ZM, Xu FM, Wang KY, Hao YJ. 2023. Geology and mineralization of the Duobaoshan supergiant porphyry Cu-Au-Mo-Ag deposit (2.36 Mt) in Heilongjiang Province, China: A review. China Geology, 6(1), 100–136. doi: 10.31035/cg2023006. |
Zhao G, Sun M, Wilde SA, Li S. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 136, 177–202. doi: 10.1016/j.precamres.2004.10.002. |
Zhao G, Zhai M. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications. Gondwana Research, 23, 1207–1240. doi: 10.1016/j.gr.2012.08.016. |
Zheng Y, Xu Z, Zhao Z, Dai L. 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Science China Earth Sciences, 61, 353–385. doi: 10.1007/s11430-017-9160-3. |
Zheng YF, Gao XY, Chen RX, Gao T. 2011. Zr-in-rutile thermometry of eclogite in the Dabie orogen: Constraints on rutile growth during continental subduction-zone metamorphism. Journal of Asian Earth Sciences, 40, 427–451. doi: 10.1016/j.jseaes.2010.09.008. |
Zhou HY, Li HK, Cui YR, Geng JZ, Zhang J, Li HM. 2013. Rutile U-Pb isotopic dating methodology. Acta Geologica Sinica, 87, 1439–1446 (in Chinese with English abstract). |
Zhu L, Zhang G, Guo B, Lee B. 2009. He-Ar isotopic system of fluid inclusions in pyrite from the molybdenum deposits in south margin of North China Block and its trace to metallogenetic and geodynamic background. Chinese Science Bulletin, 54, 2479–2492. doi: 10.1007/s11434-009-0047-0. |
Zhu RX, Xu Y, Zhu G, Zhang H, Xia Q, Zheng T. 2012a. Destruction of the north China Craton. Science China Earth Sciences, 55, 1565–1587. doi: 10.1007/s11430-012-4516-y. |
Zhu RX, Yang JH, Wu FY. 2012b. Timing of destruction of the North China Craton. Lithos, 149, 51–60. doi: 10.1016/j.lithos.2012.05.013. |
Tectonic map of the North China Craton with the spatial-temporal variation of the Late Jurassic to Early Cretaceous magmatic rocks (a, after Zhao G et al., 2005; Zhang SH et al., 2014) and geological map of the Laiyuan complex with the distribution of major lithologic units, ore deposits and faults (b, after Xue F et al., 2021).
Geological map of the Mujicun Cu-Mo deposit and adjacent regions showing major lithologic units and faults as well as the locations of boreholes (after Dong GC et al., 2013).
Exploration cross-section of Line 79 in the Mujicun Cu-Mo deposit showing the spatial distribution of lithologic units, orebodies and sampling locations.
Representative field photographs of diorite porphyry from boreholes in the Mujicun Cu-Mo deposit.
Photomicrographs of diorite porphyry from boreholes in the Mujicun Cu-Mo deposit. a–f: cross-polarized light; g–i: reflected light. Mineral abbreviations: Pl–plagioclase; Bt–biotite; Hbl–hornblende; Rt–rutile; Ccp–chalcopyrite; Mo–molybdenite; Py–pyrite.
Representative rutile CL and BSE images marked with analytical positions and spot numbers (a–c) and rutile U-Pb Terra-Wasserburg concordia plots (d–f) of diorite porphyry taken from boreholes in the Mujicun Cu-Mo deposit.
Chondrite-normalized rutile REE patterns of diorite porphyry taken from boreholes in the Mujicun Cu-Mo deposit. Chondrite-normalized values are from Sun SS and McDonough WF (1989).
Different dating age variation diagram (a), histograms of zircon U-Pb spot ages (b), and molybdenite Re-Os model ages (c) of the Mujicun Cu-Mo deposit. Data sources are from Gao YF et al. (2011, 2013); Chen C et al. (2013); Dong GC et al. (2013); Shen ZC et al. (2015).
Variation diagrams of rutile (a, c–f) and molybdenite (b) trace element contents in the Mujicun Cu-Mo deposit. (a) Mg vs. Al diagram (after Smythe D et al., 2008), (b) Re concentrations in molybdenite, (c) ΣREE vs. Cu diagram, (d) ΣREE vs. Mo diagram, (e) Cu vs. Mo diagram, and (f) As vs. Sb diagram (after Agangi A et al., 2019). Molybdenite data sources are from Gao YF et al. (2011); Chen C et al. (2013); Dong GC et al. (2013); Shen ZC et al. (2015).
Schematic tectonic model showing the generation of the Mujicun Cu-Mo deposit in the North China Craton (modified from Yang F et al., 2021b). Abbreviations: WB–Western Block; TNCO–Trans-North China Orogen; EB–Eastern Block; SCLM–Subcontinental lithospheric mantle.