2024 Vol. 7, No. 4
Article Contents

Fan Yang, Jing-wen Mao, Wei-dong Ren, Jia-run Tu, Gilby Jepson, Si-yuan Meng, Zhi-min Wang, 2024. In situ U-Pb dating and trace elements of magmatic rutile from Mujicun Cu-Mo deposit, North China Craton: Insights into porphyry mineralization, China Geology, 7, 730-746. doi: 10.31035/cg2023038
Citation: Fan Yang, Jing-wen Mao, Wei-dong Ren, Jia-run Tu, Gilby Jepson, Si-yuan Meng, Zhi-min Wang, 2024. In situ U-Pb dating and trace elements of magmatic rutile from Mujicun Cu-Mo deposit, North China Craton: Insights into porphyry mineralization, China Geology, 7, 730-746. doi: 10.31035/cg2023038

In situ U-Pb dating and trace elements of magmatic rutile from Mujicun Cu-Mo deposit, North China Craton: Insights into porphyry mineralization

More Information
  • Porphyry Cu (Mo-Au) deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings, whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generated within intra-continental settings. Although previous studies have focused on the age, origin and ore genesis of the Mujicun deposit, the ore-forming age, magma source and tectonic evolution remain controversial. Here, this study targeted rutile (TiO2) in the ore-hosting diorite porphyry from the Mujicun Cu-Mo deposit to conduct in situ U-Pb dating and trace element composition studies, with major views to determine the timing and magma evolution and to provide new insights into porphyry Cu-Mo metallogeny. Rutile trace element data show flat-like REE patterns characterized by relatively enrichment LREEs and depleted HREEs, which could be identified as magmatic rutile. Rutile U-Pb dating yields lower intercept ages of 139.3–138.4 Ma, interpreted as post magmatic cooling timing below about 500°C, which are consistent or slightly postdate with the published zircon U-Pb ages of diorite porphyry (144.1–141.7 Ma) and skarn (146.2 Ma; 139.9 Ma) as well as the molybdenite Re-Os ages of molybdenum ores (144.8–140.0 Ma). Given that the overlap between the closure temperature of rutile U-Pb system and ore-forming temperature of the Mujicun deposit, this study suggests that the ore-forming ages of the Mujicun deposit can be constrained at 139.3–138.4 Ma, with temporal links to the late large-scale granitic magmatism at 138–126 Ma in the Taihang Orogen. Based on the Mg and Al contents in rutile, the magma of ore-hosting diorite porphyry was suggested to be derived from crust-mantle mixing components. In conjunction with previous studies in Taihang Orogen, this study proposes that the far-field effect and the rollback of the subducting Paleo-Pacific slab triggered lithospheric extension, asthenosphere upwelling, crust-mantle interaction and thermo-mechanical erosion, which jointly facilitated the formation of dioritic magmas during the Early Cretaceous. Subsequently, the dioritic magmas carrying crust-mantle mixing metallic materials were emplaced and precipitated at shallow positions along NNE-trending ore-controlling faults, eventually resulting in the formation of the Mujicun Cu-Mo deposit within an intra-continental extensional setting.

  • 加载中
  • Agangi A, Reddy SM, Plavsa D, Fougerouse D, Clark C, Roberts M, Johnson TE. 2019. Antimony in rutile as a pathfinder for orogenic gold deposits. Ore Geology Reviews, 106, 1–11. doi: 10.1016/j.oregeorev.2019.01.018.

    CrossRef Google Scholar

    Asadi S, Moore F, Zarasvandi, A. 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review. Earth-Science Reviews, 138, 25–46. doi: 10.1016/j.earscirev.2014.08.001.

    CrossRef Google Scholar

    Barra F, Ruiz J, Mathur R, Titley S. 2003. A Re-Os study of sulfide minerals from the Bagdad porphyry Cu-Mo deposit, northern Arizona, USA. Mineralium Deposita, 38, 585–596. doi: 10.1007/s00126-002-0341-0.

    CrossRef Google Scholar

    Barth MG, McDonough WF, Rudnick RL. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical geology, 165, 197–213. doi: 10.1016/S0009-2541(99)00173-4.

    CrossRef Google Scholar

    Bertrand G, Guillou-Frottier L, Loiselet C. 2014. Distribution of porphyry copper deposits along the western Tethyan and Andean subduction zones: Insights from a paleotectonic approach. Ore Geology Reviews, 60, 174–190. doi: 10.1016/j.oregeorev.2013.12.015.

    CrossRef Google Scholar

    Berzina AN, Sotnikov VI, Economou-Eliopoulos M, Eliopoulos DG. 2005. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews, 26, 91–113. doi: 10.1016/j.oregeorev.2004.12.002.

    CrossRef Google Scholar

    Bibikova E, Skiöld T, Bogdanova S, Gorbatschev R, Slabunov A. 2001. Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield. Precambrian Research, 105, 315–330. doi: 10.1016/S0301-9268(00)00117-0.

    CrossRef Google Scholar

    Cai JH, Wang LB, Li JP. 2008. Mineralogical features of rutiles of different modes of occurrence and genetic types and their research significance. Mineral Deposits, 27, 531–538 (in Chinese with English abstract).

    Google Scholar

    Cai JH, Yan GH, Chang GS, Wang XF, Shao HX, Chu ZY. 2003. Petrological and geochemical characteristics of the Wanganzhen complex and discussion on its genesis. Acta Petrologica sinica, 19, 81–92 (in Chinese with English abstract).

    Google Scholar

    Cannell J, Cooke DR, Walshe JL, Stein H. 2005. Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit. Economic Geology, 100, 979–1003. doi: 10.2113/gsecongeo.100.5.979.

    CrossRef Google Scholar

    Chen B, Tian W, Zhai M. 2005. Zircon U-Pb geochronology and geochemistry of the Mesozoic magmatism in the Taihang Mountains and other places of the North China craton, with implications for petrogenesis and geodynamic setting. Acta Petrologica Sinica, 21, 13–24 (in Chinese with English abstract).

    Google Scholar

    Chen C, Wang BD, Niu SY, Ma GX, Zhang JZ, Sun AQ, Ma BJ, Chen ZK, Zhang FX, Wang ZL. 2013. Re-Os dating of molybdenite from the Mujicun Cu (-Mo) deposit in Hebei Province and characteristics of the ore-forming fluids. Geology in China, 40, 1889–1901 (in Chinese with English abstract).

    Google Scholar

    Chen C, Wang BD, Niu SY, Zhang FX, Ma BJ, Zhang JZ, Sun AQ, Wang HT, Ma GX, Chen ZK, Wang ZL. 2015. Discussion on the Ore-forming material sources of Mujicun copper (Molybdenite) polymetallic orefield in Laiyuan County, Hebei Province, China. Journal of Jilin University:Earth Science Edition, 45, 106–118 (in Chinese with English abstract).

    Google Scholar

    Cherniak DJ. 2000. Pb diffusion in rutile. Contributions to Mineralogy and Petrology, 139, 198–207. doi: 10.1007/PL00007671.

    CrossRef Google Scholar

    Cherniak DJ, Watson EB. 2001. Pb diffusion in zircon. Chemical Geology, 172, 5–24. doi: 10.1016/S0009-2541(00)00233-3.

    CrossRef Google Scholar

    Clark JR, Williams-Jones AE. 2004. Rutile as a potential indicator mineral for metamorphosed metallic ore deposits. Rapport Final de DIVEX, Sous-projet SC2, Montréal, Canada, 17.

    Google Scholar

    Cluzel D, Aitchison JC, Zhou R, Ireland T, Heizler M, Patias D, Lesimple S, Maurizot P, Teyssier C. 2022. Direct dating of podiform Chromitite: U-Pb (Zircon, Rutile) and 40Ar/39Ar (Pargasite) evidence from Tiébaghi Cr deposit (New Caledonia). Ore Geology Reviews, 145, 104873. doi: 10.1016/j.oregeorev.2022.104873.

    CrossRef Google Scholar

    Dong GC, Santosh M, Li SR, Shen JF, Mo XX, Scott S, Qu K, Wang X. 2013. Mesozoic magmatism and metallogenesis associated with the destruction of the North China Craton: evidence from U–Pb geochronology and stable isotope geochemistry of the Mujicun porphyry Cu-Mo deposit. Ore Geology Reviews, 53, 434–445. doi: 10.1016/j.oregeorev.2013.02.006.

    CrossRef Google Scholar

    Duan C, Mao J, Xie G, Chen Z, Ma G, Wang Z, Chen T, Li W. 2016. Zircon U-Pb geochronological and Hf isotope study on Tiaojishan volcanic Formation, Mujicun, North Taihang Mountain and implications for regional metallogeny and magmatism. Acta Geologica Sinica, 90, 250–266 (in Chinese with English abstract). doi: 10.1111/1755-6724.13004.

    CrossRef Google Scholar

    Edwards PM. 2002. Origin 7. 0:scientific graphing and data analysis software. Journal of chemical information and computer sciences, 42, 1270–1271. doi: 10.1021/ci0255432.

    CrossRef Google Scholar

    Ferry JM, Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154, 429–437. doi: 10.1007/s00410-007-0201-0.

    CrossRef Google Scholar

    Gao YF, Santosh M, Wei RH, Ma GX, Chen ZK, Wu JL. 2013. Origin of high Sr/Y magmas from the northern Taihang Mountains: implications for Mesozoic porphyry copper mineralization in the North China Craton. Journal of Asian Earth Sciences, 78, 143–159. doi: 10.1016/j.jseaes.2012.10.040.

    CrossRef Google Scholar

    Gao YF, Wei RH, Hou ZQ, Ma GX, Zhao RS, Chen ZK, Wu JL, Peng YX, Gao M. 2011. Mujicun porphyry copper mineralization: response to Mesozoic thinning of lithosphere in North China Craton. Mineral Deposits, 30, 890–902 (in Chinese with English abstract).

    Google Scholar

    Hou T, Zhang Z, Keiding JK, Veksler IV. 2015. Petrogenesis of the ultrapotassic Fanshan intrusion in the North China Craton: implications for lithospheric mantle metasomatism and the origin of apatite ores. Journal of Petrology, 56, 893–918. doi: 10.1093/petrology/egv021.

    CrossRef Google Scholar

    Hou Z, Xiao Y, Shen J, Yu C. 2020. In situ rutile U-Pb dating based on zircon calibration using LA-ICP-MS, geological applications in the Dabie orogen, China. Journal of Asian Earth Sciences, 192, 104261. doi: 10.1016/j.jseaes.2020.104261.

    CrossRef Google Scholar

    Hou ZQ, Li QY, Gao YF, Lu YJ, Yang ZM, Wang R, Shen ZC. 2015. Lower-crustal magmatic hornblendite in North China Craton: Insight into the genesis of porphyry Cu deposits. Economic Geology, 110, 1879–1904. doi: 10.2113/econgeo.110.7.1879.

    CrossRef Google Scholar

    Hou ZQ, Ma H, Khin Z, Zhang Y, Wang M, Wang Z, Pan G, Tang R. 2003. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet. Economic Geology, 98, 125–145. doi: 10.2113/gsecongeo.98.1.125.

    CrossRef Google Scholar

    Hou ZQ, Yang ZM, Qu XM, Meng XJ, Li ZQ, Beaudoin G, Rui ZY, Gao YF, Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews, 36, 25–51. doi: 10.1016/j.oregeorev.2008.09.006.

    CrossRef Google Scholar

    Huang XL, Zhong JW, Xu YG. 2012. Two tales of the continental lithospheric mantle prior to the destruction of the North China Craton: Insights from Early Cretaceous mafic intrusions in western Shandong, East China. Geochimica et Cosmochimica Acta, 96, 193–214. doi: 10.1016/j.gca.2012.08.014.

    CrossRef Google Scholar

    Jochum KP, Pfander J, Snow JE, Hofmann AW. 1997. Nb/Ta in mantle and crust. Eos, 78, 804.

    Google Scholar

    Kamber BS, Collerson KD. 2000. Role of ‘hidden’ deeply subducted slabs in mantle depletion. Chemical Geology, 166, 241–254. doi: 10.1016/S0009-2541(99)00218-1.

    CrossRef Google Scholar

    Lan TG, Fan HR, Santosh M, Hu FF, Yang KF, Yang YH, Liu Y. 2012. Early Jurassic high-K calc-alkaline and shoshonitic rocks from the Tongshi intrusive complex, eastern North China Craton: implication for crust–mantle interaction and post-collisional magmatism. Lithos, 140, 183–199. doi: 10.1016/j.lithos.2012.01.015.

    CrossRef Google Scholar

    Larsen ES. 1929. The temperatures of magmas. American Mineralogist: Journal of Earth and Planetary Materials, 14, 81–94.

    Google Scholar

    Li D, Zhang ST, Yan CH, Wang GW, Song YW, Ma ZB, Han JW. 2012. Late Mesozoic time constraints on tectonic changes of the Luanchuan Mo belt, East Qinling orogen, Central China. Journal of Geodynamics, 61, 94–104. doi: 10.1016/j.jog.2012.02.005.

    CrossRef Google Scholar

    Li Q, Li S, Zheng YF, Li H, Massonne HJ, Wang Q. 2003. A high precision U-Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China: a new constraint on the cooling history. Chemical Geology, 200, 255–265. doi: 10.1016/S0009-2541(03)00194-3.

    CrossRef Google Scholar

    Li SR, Santosh M. 2017. Geodynamics of heterogeneous gold mineralization in the North China Craton and its relationship to lithospheric destruction. Gondwana Research, 50, 267–292. doi: 10.1016/j.gr.2017.05.007.

    CrossRef Google Scholar

    Li SR, Santosh M, Zhang HF, Shen JF, Dong GC, Wang JZ, Zhang JQ. 2013. Inhomogeneous lithospheric thinning in the central North China Craton: zircon U-Pb and S-He-Ar isotopic record from magmatism and metallogeny in the Taihang Mountains. Gondwana Research, 23, 141–160. doi: 10.1016/j.gr.2012.02.006.

    CrossRef Google Scholar

    Li WC, Zhang XF, Yu HJ, Tao D, Liu XL. 2022. Geology and mineralization of the Pulang supergiant porphyry copper deposit (5.11 Mt) in Shangri-la, Yunnan Province, China: A review. China Geology, 5(4), 662–695. doi: 10.31035/cg2022060.

    CrossRef Google Scholar

    Lin B, Tang JX, Tang P, Zheng WB, Song Y, Li FQ, Leng QF, Wang ZC, Qi J, Sun M, Bello Rodríguez JD. 2023. Geology, geochronology, and exploration of the Jiama giant porphyry copper deposit (11 Mt), Tibet, China: A review. China Geology, 6(2), 338–357. doi: 10.31035/cg2023031.

    CrossRef Google Scholar

    Liu J, Zhao Y, Liu X, Wang Y, Liu X. 2012. Rapid exhumation of basement rocks along the northern margin of the North China craton in the early Jurassic: Evidence from the Xiabancheng Basin, Yanshan Tectonic Belt. Basin Research, 24, 544–558. doi: 10.1111/j.1365-2117.2011.00538.x.

    CrossRef Google Scholar

    Ma G. 1997. Geological characteristics and metallogenic model of copper deposit at Muji Village of Laiyuan County, Hebei Province. Journal of Geology and Mineral Resources of North China, 12, 52–66 (in Chinese with English abstract).

    Google Scholar

    Malkovets VG, Rezvukhin DI, Belousova EA, Griffin WL, Sharygin IS, Tretiakova IG, Gibsher AA, O’Reilly SY, Kuzmin DV, Litasov KD, Logvinova AM, Pokhilenke NP, Sobolev NV. 2016. Cr-rich rutile: A powerful tool for diamond exploration. Lithos, 265, 304–311. doi: 10.1016/j.lithos.2016.08.017.

    CrossRef Google Scholar

    Mao J, Liu P, Goldfarb RJ, Goryachev NA, Pirajno F, Zheng W, Zhou M, Zhao C, Xie G, Yuan S, Liu M. 2021a. Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension, East Asia. Ore Geology Reviews, 136, 104270. doi: 10.1016/j.oregeorev.2021.104270.

    CrossRef Google Scholar

    Mao J, Pirajno F, Lehmann B, Luo M, Berzina A. 2014. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. Journal of Asian Earth Sciences, 79, 576–584. doi: 10.1016/j.jseaes.2013.09.002.

    CrossRef Google Scholar

    Mao J, Zheng W, Xie G, Lehmann B, Goldfarb R. 2021b. Recognition of a Middle-Late Jurassic arc-related porphyry copper belt along the southeast China coast: Geological characteristics and metallogenic implications. Geology, 49, 592–596. doi: 10.1130/G48615.1.

    CrossRef Google Scholar

    Mao JW, Xie GQ, Yuan SD, Liu P, Meng XY, Zhou ZH, Zheng W. 2018. Current research progress and future trends of porphyry-skarn copper and granite-related tin polymetallic deposits in the Circum Pacific metallogenic belts. Acta Petrologica Sinica, 34, 2501–2517 (in Chinese with English abstract).

    Google Scholar

    Mao JW, Zhang Z, Zhang Z, Du A. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance. Geochimica et Cosmochimica Acta, 63, 1815–1818. doi: 10.1016/S0016-7037(99)00165-9.

    CrossRef Google Scholar

    McDonough WF. 1991. Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology. Philosophical Transactions of the Royal Society of London. Series A:Physical and Engineering Sciences, 335, 407–418. doi: 10.1098/rsta.1991.0055.

    CrossRef Google Scholar

    McDonough WF, Sun SS. 1995. The composition of the Earth. Chemical geology, 120, 223–253. doi: 10.1016/0009-2541(94)00140-4.

    CrossRef Google Scholar

    Meinhold G. 2010. Rutile and its applications in earth sciences. Earth-Science Reviews, 102, 1–28. doi: 10.1016/j.earscirev.2010.06.001.

    CrossRef Google Scholar

    Meisel T, Walker RJ, Irving AJ, Lorand JP. 2001. Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochimica et Cosmochimica Acta, 65, 1311–1323. doi: 10.1016/S0016-7037(00)00566-4.

    CrossRef Google Scholar

    Mezger K, Hanson GN, Bohlen SR. 1989. High-precision U-Pb ages of metamorphic rutile: application to the cooling history of high-grade terranes. Earth and Planetary Science Letters, 96, 106–118. doi: 10.1016/0012-821X(89)90126-X.

    CrossRef Google Scholar

    Munker C, Pfander JA, Weyer S, Buchl A, Kleine T, Mezger K. 2003. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics. Science, 301, 84–87. doi: 10.1126/science.108466.

    CrossRef Google Scholar

    Müller RD, Sdrolias M, Gaina C, Steinberger B, Heine C. 2008. Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319, 1357–1362. doi: 10.1126/science.1151540.

    CrossRef Google Scholar

    Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards newsletter, 21, 115–144. doi: 10.1111/j.1751-908X.1997.tb00538.x.

    CrossRef Google Scholar

    Pi QH, Hu RZ, Xiong B, Li QL, Zhong RC. 2017. In situ SIMS U-Pb dating of hydrothermal rutile: reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China. Mineralium Deposita. 52, 1179–1190. doi: 10.1007/s00126-017-0715-y

    Google Scholar

    Porter JK, McNaughton NJ, Evans NJ, McDonald BJ. 2020. Rutile as a pathfinder for metals exploration. Ore Geology Reviews, 120, 103406. doi: 10.1016/j.oregeorev.2020.103406.

    CrossRef Google Scholar

    Qu K. 2012. Geology and mineralization in Mujicun porphyry Cu-Mo deposit, Northern Taihang Mt., China. China University of Geosciences (Beijing), Master thesis, 1–78 (in Chinese with English abstract).

    Google Scholar

    Qu K, Dong GC, Li SR, Shen JF, Wang YJ, Wang X, Luo W. 2014. Lithogeochemistry and Sr-Nd-Pb isotopic characteristics of Mujicun porphyry Cu-Mo deposit in Taihang Mountains and their significance. Geoscience, 28, 449–460 (in Chinese with English abstract).

    Google Scholar

    Rabbia OM, Hernández LB, French DH, King RW, Ayers JC. 2009. The El Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective. Mineralium Deposita, 44, 849–866. doi: 10.1007/s00126-009-0252-4.

    CrossRef Google Scholar

    Richards JP. 2022. Porphyry copper deposit formation in arcs: What are the odds? Geosphere, 18, 130–155. doi: 10.1130/GES02086.1

    Google Scholar

    Rudnick RL, Barth M, Horn I, McDonough WF. 2000. Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science, 287, 278–281. doi: 10.1126/science.287.5451.278.

    CrossRef Google Scholar

    Rudnick RL, Gao S, Holland HD, Turekian KK. 2003. Composition of the continental crust. The crust, 3, 1–64.

    Google Scholar

    Rui ZY, Hou ZQ, Qu XM, Zhang LS, Wang LS, Liu YL. 2003. Metallogenetic epoch of Gangdese porphyry copper belt and uplift of Qinghai-Tibet plateau. Mineral Deposits, 22, 217–225 (in Chinese with English abstract).

    Google Scholar

    Schirra M, Laurent O. 2021. Petrochronology of hydrothermal rutile in mineralized porphyry Cu systems. Chemical Geology, 581, 120407. doi: 10.1016/j.chemgeo.2021.120407.

    CrossRef Google Scholar

    Schmidt MW, Dardon A, Chazot G, Vannucci R. 2004. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters, 226, 415–432. doi: 10.1016/j.jpgl.2004.08.010.

    CrossRef Google Scholar

    Scott KM. 2005. Rutile geochemistry as a guide to porphyry Cu-Au mineralization, Northparkes, new South Wales, Australia. Geochemistry: Exploration, Environment, Analysis, 5, 247–253. doi: 10.1144/1467-7873/03-055.

    CrossRef Google Scholar

    Scott KM, Radford NW. 2007. Rutile compositions at the Big Bell Au deposit as a guide for exploration. Geochemistry:Exploration, Environment, Analysis,7,353–361. doi: 10.1144/1467-7873/07-135.

    CrossRef Google Scholar

    Shen JF, Li SR, Santosh M, Dong GC, Wang YJ, Liu HM, Peng ZD, Zhang ZY. 2015. Zircon U-Pb geochronology of the basement rocks and dioritic intrusion associated with the Fushan skarn iron deposit, southern Taihang Mountains, China. Journal of Asian Earth Sciences, 113, 1132–1142. doi: 10.1016/j.jseaes.2015.01.009.

    CrossRef Google Scholar

    Shen ZC, Hou ZQ, Chen ZK, Li QY, Zhou YM, Wang ZM. 2015. Molybdenite Re-Os isotopic dating and zircon SHRIMP U-Pb and Hf isotopic compositions of the Mujicun porphyry deposit. Acta Petrologica et Mineralogica, 34, 526–538 (in Chinese with English abstract).

    Google Scholar

    Sillitoe RH. 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67, 184–197. doi: 10.2113/gsecongeo.67.2.184.

    CrossRef Google Scholar

    Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105, 3–41. doi: 10.2113/gsecongeo.105.1.3.

    CrossRef Google Scholar

    Smythe D, Schulze D, Brenan J. 2008. Rutile as a kimberlite indicator mineral: minor and trace element geochemistry. In International Kimberlite Conference: Extended Abstracts (Vol. 9).

    Google Scholar

    Sobolev NV, Yefimova ES. 2000. Composition and petrogenesis of Ti-oxides associated with diamonds. International Geology Review, 42, 758–767. doi: 10.1080/00206810009465110.

    CrossRef Google Scholar

    Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313–345. doi: 10.1144/GSL.SP.1989.042.01.19

    Google Scholar

    Sun W, Ding X, Hu YH, Li XH. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters, 262, 533–542. doi: 10.1016/j.jpgl.2007.08.021.

    CrossRef Google Scholar

    Suzuki K, Shimizu H, Masuda A. 1996. Re-Os dating of molybdenites from ore deposits in Japan: Implication for the closure temperature of the Re-Os system for molybdenite and the cooling history of molybdenum ore deposits. Geochimica et Cosmochimica Acta, 60, 3151–3159. doi: 10.1016/0016-7037(96)00164-0.

    CrossRef Google Scholar

    Tang M, Lee CTA, Chen K, Erdman M, Costin G, Jiang H. 2019. Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nature Communications, 10, 1–8. doi: 10.1038/s41467-018-08198-3.

    CrossRef Google Scholar

    Vermeesch P. 2018. IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers, 9, 1479–1493. doi: 10.1016/j.gsf.2018.04.001.

    CrossRef Google Scholar

    Vry JK, Baker JA. 2006. LA-MC-ICPMS Pb-Pb dating of rutile from slowly cooled granulites: confirmation of the high closure temperature for Pb diffusion in rutile. Geochimica et Cosmochimica Acta, 70, 1807–1820. doi: 10.1016/j.gca.2005.12.006.

    CrossRef Google Scholar

    Wang Y, Li H. 2008. Initial formation and Mesozoic tectonic exhumation of an intracontinental tectonic belt of the northern part of the Taihang Mountain belt, eastern Asia. The Journal of Geology, 116, 155–172. doi: 10.1086/529153.

    CrossRef Google Scholar

    Watson EB, Wark DA, Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413–433. doi: 10.1007/s00410-006-0068-5.

    CrossRef Google Scholar

    Wu FY, Han RH, Yang JH, Wilde SA, Zhai MG, Park SC. 2007. Initial constraints on the timing of granitic magmatism in North Korea using U–Pb zircon geochronology. Chemical Geology, 238, 232–248. doi: 10.1016/j.chemgeo.2006.11.012.

    CrossRef Google Scholar

    Wu FY, Lin JQ, Wilde SA, Yang JH. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233, 103–119. doi: 10.1016/j.jpgl.2005.02.019.

    CrossRef Google Scholar

    Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA, Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41, 1–30. doi: 10.1016/j.jseaes.2010.11.014.

    CrossRef Google Scholar

    Wu JJ, Liu JC, Zhang HD, Hou LM, Zheng LH. 2014. Geological characteristics and their ore-forming material sources of Lianbaling Pb-Zn deposit in Taihang Mountains. Journal of Earth Sciences & Environment, 36 (in Chinese with English abstract).

    Google Scholar

    Xiao W, Li S, Santosh M, Jahn BM. 2012. Orogenic belts in Central Asia: Correlations and connections. Journal of Asian Earth Sciences, 49, 1–6. doi: 10.1016/j.jseaes.2012.03.001.

    CrossRef Google Scholar

    Xiao X, Zhou T, White NC, Fan Y, Zhang L, Chen X. 2021. Porphyry Cu mineralization processes of Xinqiao deposit, Tongling ore district: Constraints from the geochronology and geochemistry of zircon, apatite, and rutile. Ore Geology Reviews, 138, 104340. doi: 10.1016/j.oregeorev.2021.104340.

    CrossRef Google Scholar

    Xiao Y, Sun W, Hoefs J, Simon K, Zhang Z, Li S, Hofmann AW. 2006. Making continental crust through slab melting: constraints from niobium-tantalum fractionation in UHP metamorphic rutile. Geochimica et Cosmochimica Acta, 70, 4770–4782. doi: 10.1016/j.gca.2006.07.010.

    CrossRef Google Scholar

    Xiao YL, Huang J, Liu L, Li DY. 2011. Rutile, an important “reservoir” for geochemical information. Acta Petrolagica Sinica, 27, 398–416 (in Chinese with English abstract).

    Google Scholar

    Xue F, Santosh M, Kim SW, Tsunogae T, Yang F. 2021. Thermo-mechanical destruction of Archean cratonic roots: Insights from the Mesozoic Laiyuan granitoid complex, North China Craton. Lithos, 400, 106394. doi: 10.1016/j.lithos.2021.106394.

    CrossRef Google Scholar

    Xue F, Santosh M, Tsunogae T, Yang F. 2019. Geochemical and isotopic imprints of early cretaceous mafic and felsic dyke suites track lithosphere-asthenosphere interaction and craton destruction in the North China Craton. Lithos, 326, 174–199. doi: 10.1016/j.lithos.2018.12.013.

    CrossRef Google Scholar

    Xue F, Wang G, Santosh M, Yang F, Shen Z, Kong L, Guo N, Zhang X, Jia, W. 2018. Geochemistry and geochronology of ore-bearing and barren intrusions in the Luanchuan ore fields of East Qinling metallogenic belt, China: diverse tectonic evolution and implications for mineral exploration. Journal of Asian Earth Sciences, 157, 57–77. doi: 10.1016/j.jseaes.2017.04.027.

    CrossRef Google Scholar

    Yang J, Wu F. 2009. Triassic magmatism and its relation to decratonization in the eastern North China Craton. Science in China Series D:Earth Sciences, 52, 1319–1330. doi: 10.1007/s11430-009-0137-5.

    CrossRef Google Scholar

    Yang F, Kim SW, Tsunogae T, Zhou H. 2021b. Multiple enrichment of subcontinental lithospheric mantle with Archean to Mesozoic components: Evidence from the Chicheng ultramafic complex, North China Craton. Gondwana Research, 94, 201–221. doi: 10.1016/j.gr.2021.03.005.

    CrossRef Google Scholar

    Yang F, Santosh M, Glorie S, Jepson G, Xue F, Kim SW. 2020b. Meso-Cenozoic multiple exhumation in the Shandong Peninsula, eastern North China Craton: Implications for lithospheric destruction. Lithos, 370, 105597. doi: 10.1016/j.lithos.2020.105597.

    CrossRef Google Scholar

    Yang F, Santosh M, Kim SW. 2018a. Mesozoic magmatism in the eastern North China Craton: Insights on tectonic cycles associated with progressive craton destruction. Gondwana Research, 60, 153–178. doi: 10.1016/j.gr.2018.04.003.

    CrossRef Google Scholar

    Yang F, Santosh M, Kim SW, Zhou H. 2021a. Late Neoarchean to Paleoproterozoic arc magmatism in the Shandong Peninsula, North China Craton and its tectonic implications. Precambrian Research, 358, 106188. doi: 10.1016/j.precamres.2021.106188.

    CrossRef Google Scholar

    Yang F, Santosh M, Kim SW, Zhou H, Jeong YJ. 2020a. Late Mesozoic intraplate rhyolitic volcanism in the North China Craton: Far-field effect of the westward subduction of the Paleo-Pacific Plate. GSA Bulletin, 132, 291–309. doi: 10.1130/B35123.1.

    CrossRef Google Scholar

    Yang F, Santosh M, Kim SW, Zhou H, Xue F. 2019. Early Cretaceous adakitic granitoids from the Zhijiazhuang skarn iron deposit, North Taihang Mountain, China: Implications for petrogenesis and metallogenesis associated with craton destruction. Geological Journal, 54, 3189–3211. doi: 10.1002/gj.3320.

    CrossRef Google Scholar

    Yang F, Santosh M, Tang L. 2018b. Extensive crustal melting during craton destruction: evidence from the Mesozoic magmatic suite of Junan, eastern North China Craton. Journal of Asian Earth Sciences, 157, 119–140. doi: 10.1016/j.jseaes.2017.07.010.

    CrossRef Google Scholar

    Yang HH, Wang Q, Li YB, Lin B, Song Y, Wang YY, He W, Li HW, Li S, Li JL, Liu CC, Feng SB, Xin T, Fu XL, Liang XJ, Zhang Q, Wang BQ, Li Y. 2022. Geology and mineralization of the Tiegelongnan supergiant porphyry-epithermal Cu (Au, Ag) deposit (10 Mt) in western Tibet, China: A review. China Geology, 5(1), 136–159. doi: 10.31035/cg2022001.

    CrossRef Google Scholar

    Yang ZM, Goldfarb R, Chang ZS. 2016. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate. Society of Economic Geologists Special Publication, 19, 279–300. doi: 10.5382/SP.19.11.

    CrossRef Google Scholar

    Zack TV, Moraes RD, Kronz A. 2004a. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, 148, 471–488. doi: 10.1007/s00410-004-0617-8.

    CrossRef Google Scholar

    Zack TV, Von Eynatten H, Kronz A. 2004b. Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology, 171, 37–58. doi: 10.1016/j.sedgeo.2004.05.009.

    CrossRef Google Scholar

    Zhai MG, Santosh M. 2011. The early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Research, 20, 6–25. doi: 10.1016/j.gr.2011.02.005.

    CrossRef Google Scholar

    Zhang JQ, Li SR, Santosh M, Wang JZ, Li Q. 2015. Mineral chemistry of high-Mg diorites and skarn in the Han-Xing Iron deposits of South Taihang Mountains, China: Constraints on mineralization process. Ore Geology Reviews, 64, 200–214. doi: 10.1016/j.oregeorev.2014.07.007.

    CrossRef Google Scholar

    Zhang HD, Liu JC, Wang JY, Zhang SN, Hu B, Wang DQ, Han S. 2016. Petrology, geochronology and geochemistry characteristics of Wang’anzhen complex in the northern Taihang Mountain and their geological significance. Acta Petrologica Sinica, 32, 727–745 (in Chinese with English abstract).

    Google Scholar

    Zhang L, Wu JL, Tu JR, Wu D, Li N, Xia XP, Ren ZY. 2020. RMJG Rutile: A New Natural Reference Material for Microbeam U-Pb Dating and Hf Isotopic Analysis. Geostandards and Geoanalytical Research, 44, 133–145. doi: 10.1111/ggr.12304.

    CrossRef Google Scholar

    Zhang SH, Zhao Y, Davis GA, Ye H, Wu F. 2014. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization. Earth-Science Reviews, 131, 49–87. doi: 10.1016/j.earscirev.2013.12.004.

    CrossRef Google Scholar

    Zhang S, Ju N, Zhang GB, Zhao YD, Ren YS, Liu BS, Wang H, Guo RR, Yang Q, Sun ZM, Xu FM, Wang KY, Hao YJ. 2023. Geology and mineralization of the Duobaoshan supergiant porphyry Cu-Au-Mo-Ag deposit (2.36 Mt) in Heilongjiang Province, China: A review. China Geology, 6(1), 100–136. doi: 10.31035/cg2023006.

    CrossRef Google Scholar

    Zhao G, Sun M, Wilde SA, Li S. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 136, 177–202. doi: 10.1016/j.precamres.2004.10.002.

    CrossRef Google Scholar

    Zhao G, Zhai M. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications. Gondwana Research, 23, 1207–1240. doi: 10.1016/j.gr.2012.08.016.

    CrossRef Google Scholar

    Zheng Y, Xu Z, Zhao Z, Dai L. 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Science China Earth Sciences, 61, 353–385. doi: 10.1007/s11430-017-9160-3.

    CrossRef Google Scholar

    Zheng YF, Gao XY, Chen RX, Gao T. 2011. Zr-in-rutile thermometry of eclogite in the Dabie orogen: Constraints on rutile growth during continental subduction-zone metamorphism. Journal of Asian Earth Sciences, 40, 427–451. doi: 10.1016/j.jseaes.2010.09.008.

    CrossRef Google Scholar

    Zhou HY, Li HK, Cui YR, Geng JZ, Zhang J, Li HM. 2013. Rutile U-Pb isotopic dating methodology. Acta Geologica Sinica, 87, 1439–1446 (in Chinese with English abstract).

    Google Scholar

    Zhu L, Zhang G, Guo B, Lee B. 2009. He-Ar isotopic system of fluid inclusions in pyrite from the molybdenum deposits in south margin of North China Block and its trace to metallogenetic and geodynamic background. Chinese Science Bulletin, 54, 2479–2492. doi: 10.1007/s11434-009-0047-0.

    CrossRef Google Scholar

    Zhu RX, Xu Y, Zhu G, Zhang H, Xia Q, Zheng T. 2012a. Destruction of the north China Craton. Science China Earth Sciences, 55, 1565–1587. doi: 10.1007/s11430-012-4516-y.

    CrossRef Google Scholar

    Zhu RX, Yang JH, Wu FY. 2012b. Timing of destruction of the North China Craton. Lithos, 149, 51–60. doi: 10.1016/j.lithos.2012.05.013.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(68) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint