Citation: | Viktor Antipin, Valentina Makrygina, Larisa Kushch, Nataliya Sheptyakova, 2024. Age and geochemical evolution of granite magmatism in Olkhon region from Caledonian syncollisional ore-free granite to the rare metal granite and pegmatite of Middle Paleozoic intraplate setting, China Geology, 7, 63-79. doi: 10.31035/cg2023040 |
The detailed description of two granite complexes in the Olkhon subterrane is given. The Early Paleozoic Sharanur complex was formed by granitization of gneisses of the Olkhon series. It includes migmatites, granite-gneisses, granites and pegmatites of normal alkalinity; they belong to the type of syncollisional granites. The Middle Paleozoic Aya granite complex includes mother Aya massif of amazonite-bearing granites and several types of rare-metal pegmatites. They have elevated alkalinity, low of Ba, Sr, and high LILE and HFSE elements contents. The Aya pegmatites lie in northwest cracks of stretching and associated with the rise of the territory under the influence of the North Asian plume. These cracks and pegmatites mark the beginning of a new intraplate geodynamic setting. Two geochemical types are distinguished among the pegmatites of this complex. These are amazonite pegmatites of Li-F type with Ta mineralization and complex type pegmatite with Be-Rb-Nb-Ta and Li-F mineralization (the Ilixin vein). The Tashkiney pegmatite vein is similar to Ilixin, but lies in the gneisses of the Olkhon series. It shows high concentrations of Be, Nb, Ta, as well as W, Sn, but lacks Li and F, due to a greater depth and higher temperature of the melt crystallization of this pegmatite.
Amosova AA, Panteeva SV, Tatarinov VV, Chubarov VM, Finkelshtein AL. 2015. X-ray fluorescence determination of major rock forming elements in small samples 50 and 110 mg. Anal. Contr. 19, 130–138 (In Russian). |
Antipin VS, Gorlacheva NV, Makrygina VA 2014. Geochemistry of Early Paleozoic granitoids of the Baikal region and their geodynamic setting exemplified by the Khamar-Daban Ridge and Olkhon Island. Russion Geology and Geophysics. 55(2). 177–189. |
Antipin VS, Gorlacheva NV, Makrygina VA, Kushch LV 2012. Composition and geochemical typization of granitoids from Olkhon Island (Sharanurskii complex). Doklady Earth Sciences. V. 445. Part 1. 858–862. |
Antipin VS, Kushch LV, Sheptyakova NV, Vladimirov AG. 2018. Geochemical evolution of the early Paleozoic collisional magmatism from autochthonous migmatites and granites to multiphase granite intrusions (Sharanur and Aya complexes, Baikal Region). Russ. Geol. Geophys. 59(12). 1616–1625. doi: 10.15372/GiG20181207. |
Chappell BW and White AJR 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences. 48. 489–499. |
Donskaya TV, Gladkochub DP, Fedorovsky VS, Mazukabzov AM, Cho, M, Cheong, W, Kim J, 2013. Synmetamorphic granites (~490 Ma) as accretion indicators in the evolution of the Olkhon terrane (western Cisbaikalia). Russ. Geol. Geophys. 54 (10), 1205–1218. |
Fedorovsky VS, Dobrzhinetskaya LF, Molchanov TV, Likhachev AB, 1993. A new type of mélange (Baikal, Olkhon region). Geotectonika. No 4. 30–45. |
Fedorovsky VS, Vladimirov AG, Khain EV, Kargopolov SA, Gibsher AS, Izokh AE. 1995. Tectonics, metamorphism and magmatism of collision zones of Central Asian Caledonides. Geotektonika 3, 3–22. |
Fedorovsky VS, Sklyarov EV. 2010. Olkhon Geodynamic proving ground (Lake Baikal): High-resolution satellite data and a new generation geological map Geodynamics and Tectonophysics, 1(4), 331–418. doi. org/10.5800/GT-2010-1-4-0026. |
Fedorovsky VS, Sklyarov EV, Gladkochub DP, Mazukabzov AM, Donskaya TV, Lavrenchuk AV, Starikova AE, Dobretsov NL, Kotov AB, Tevelev AV. 2020. Collision system of the West Baikal region: Aerospace geological map of the Olkhon region (Baikal, Russia). Geodynamics and tectonophysics, 3, URL: https://cyberleninka.ru/article/n/kollizionnaya-sistema-zapadnogo-pribaykalya-aerokosmicheskaya-geologicheskaya-karta-olhonskogo-regiona-baykal-rossiya. |
Geostandards Newletter, 1994. Vol. 18. Spec. Issue, July. |
Gladkochub DP, Donskaya TV, Fedorovsky VS, Mazukabzov AM, Larionov AN, Sergeev SA, 2010. The Olkhon metamorphic terrane in the Baikal region: An Early Paleozoic collage of Neoproterozoic active margin fragments. Russ. Geol. Geophys. 51(5), 447–460. |
Ivanov AN, Shmakin BM. 1980. Granite and pegmatite formation of the West PreBaikalie. Moscow: 218 p. (in Russian) |
Khubanov VB, Buyantuev MD, Tsygankov AA. 2016. U-Pb dating of zircons from PZ3-MZ igneous complexes of Transbaikalia by sector-field mass spectrometry with laser sampling: technique and comperison with SHRIMP. Russ. Geol. Geophys. 57(1), 241–258. doi: 10.15372/GiG20160113. |
King PL Chappell BW, Allen CM & White J. R. 2001. Are A-type the high temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journ. of Earth Sciences. 48, 501–514. |
Letnikov FA, Khalilov VA, Savelyeva VB, 1995. Isotope dating of the endogenic processes in Pryolkhonie. Dokl. Earth Sci. 344 (1), 96–100. |
Makagon VM, Belozerova OYu, 2013. Bismutotantalite from pegmatites of the Western Baikal Region, East Siberia, Russia. PEG, Abstracts. New Hampshire, USA, 88–89. |
Makrygina VA, 2021. Specifics of Caledonian Collision in the Olkhon region (Lake Baikal, Russia). Russ. Geology and Geophysics, 62(4), 389–400. |
Makrygina VA, Antipin VS, 2018. Petrology and Geochemistry of Metamorphic and Igneous Rocks of the Olkhon Region; GEO Novosibirsk, 248 p. doi: 10/21782/B978-5-9909584-4-9. (in Russian). |
Makrygina VA, Koneva AA. 2010. Geochemistry of over deposited and overdeposited wethering cores, PreBaikalie . Geochem. Int., No 8. 765–777. |
Makrygina VA, Petrova ZI. 1996. Geochemistry of migmatite and granite Preolkhonie and Olkhon Island (West PreBaikalie). Geochem. Int., 34(7), .574–585. |
Makrygina VA, Sandimirov IV, Sandimirova GP, Pakholchenko YuA, Kotov AB, Kovach VP, Travin AV. 2010. Nd-Sr systematiks of magmatic rocks of the Anga and Talanchanka sequences of middle Baikal. Geochem. Intern., 48(10), 979–987. doi: 10.1134/S0016702910100034 |
Makrygina VA, Suvorova, LF, Antipin VS, Makagon VM. 2018. Rare-metal pegmatoid granites, markes of the beginning of the Hercynian within-plate stage in the Olkhon region of the Baikal area. Russ. Geol. Geophys. 59(12), 1626–1639. doi: 10.15372/GiG20181208. |
Makrygina VA, Suvorova LF. Lepekhina EN. 2015. Fluid regime of the initial stages of granite formation in metamorphic complexes of different pressures. Geochem. Int. No 4. 312–326. |
Makrygina VA, Tolmacheva EV, Lepekhina EN. 2014. Cristallization History of Paleozoic granitoids in the Olkhon region, Lake, Baikal (Shrimp-II zircon dating). Russ. Geology and Geophisics, 55,(1), 33–45. doi: 10.1016/j.rgg.2013.12.010 |
McDonough WF, Sun S-S, 1995. The Composition of the Earth. Chemical Geology 120, 223–253. https://doi.org/10.1016/0009-2541(94)00140-4. |
Mikheev EI, Vladimirov AG, Fedorovsky VS, Bayanova TB, Mazukabzov AM, Travin AV, Volkova NI, Khromykh SV, Khlestov VV, Tishin PA, 2017. Age of overthrust-type complex granites in accretionary–collisional system of the early Caledonides (western Baikal region). Dokl. Earth Sci. 472(2), 152–158. doi: 10.7868/S0869565217050206. |
Mordvinova VV, Kobelev MM, Treussov AV, Khritova MA, Trunkova DS, Kobeleva EA, Lukhneva OK. 2016. Deep structure of the Sibirian platform – Central Asian mobile belt transitions zone from teleseismic data. Geodynamics & Tectonophysics. V. 7. Iss. 1. P. 85–103. |
Pavlovsky EV, Eskin AS. 1964. Composition features and structures Arkhean of PreBaikalie. /Editor V. G. Belichenko/ - M.: Science, 128 p. (In Russian). |
Pearce JA, 1996. A user’s guide to basalt discrimination diagrams. In: Wyman, D. A. (ed.) Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes 12, 79–113. |
Pearce JA, Harris NBW, Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–983. doi: 10.1093/petrology/25.4.956. |
Rudnick RL, Gao S. 2003. Composition of the Continental Crust. In: Holland H. D, Turekian KK (eds). Treatise on Geochemistry. Elsevier-Pergamon, Oxford 3, 1–64. doi: 10.1016/B0-08-043751-6/03016-4. |
Savelyeva VB, Kanakin SV, Karmanov NS. 2013. New data on mineralogy of amazonite pegmatites in Priolkhonye (Western Baikal Region). Zapisky RМО, Pt CXLII, 2, 44–66. |
Shmakin BM, Makagon VM, Koneva AA, Ivanov AN. 1973. Amazonite pegmatites of the Olkhon Region (Western Baikal area). Zapisky RМО, 103, 5, 591–599. (In Russian). |
Sklyarov EV, Fedorovsky VS, Kotov AB, Lavrenchuk AV, Mazukabzov AM, Levitsky VI, Sal’nikova EB, Starikova AE, Yakovleva SZ, Anisimova IV, Fedoseenko AM, 2009. Carbonatites in collisional settings and pseudo-carbonatites of the Early Paleozoic Olkhon collisional system. Russ. Geol. Geophys. 50, 12, 1091–1106 (1405–1423). |
Vladimirov AG, Khromykh SV, Fedorovsky VS, Khlestov VV, Volkova NI, Vladimirov VG, Travin AV, Yudin DS, Sergeev SA, Matukov DA. 2004. Stress granites and their significance for assessing the duration and intensity of tectonic metamorphic events during collisional orogeny Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from the ocean to the continent). Materials of the scientific meeting on the Program of Fundamental research, 2, 67–71. |
Vladimirov AG, Khromykh SV, Mekhonoshin AS, Volkova NI, Travin AV, Yudin DS, Kruk NN. 2008. U–Pb dating and Sm–Nd systematics of igneous rocks in the Olkhon region (Western Baikal Coast). Dokl. Earth Sci., 423(5), 651–655. doi: 10.1134/S1028334X08090092 |
Volkova NI, Travin AV, Vladimirov AG, Mekhonoshin AS, Khromykh SV, Yudin DS, Matukov DI, Lepekhina EN. 2009. The first data on the age of the oceanic crust of the Olkhon region (according to the results of U-Pb zirconometry of granulites, SHRIMP-II. Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from the ocean to the continent). Materials of the meeting, 65–67. |
Windley BF, Alexeiev D, Xiao W, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc. London, 164, 31–47. doi: 10.1144/0016-76492006-022 |
Xiao W, Santosh M. 2014, The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth: Gondwana Research, v. 25, pp. 1429–1444. |
Yarmolyuk VV, Kovalenko VI, Kuzmin MI. 2000. North-Asian activity superplume in the Phanerozoic: magmatism and geodynamics. Geotektonika 5, 3–29. |
Yudin DS, Khromykh SV, Mekhonoshin AS, Vladimirov AG, Travin AV, Kolotilina TB, Volkova MG. 2005. 40Ar/39Ar age and geochemical features of syncollisional gabbroids and granites from the Western Baikal Region: evidence from the Birkhin massif and its folded framing. Dokl. Earth Sci. 405(2), 1261–1265. Rus. 251–255. |
Zagorsky VE, Makagon VM, Shmakin BM, 2003. Systematics of the granite pegmatites. Russ. Geol. Geophys. 44, 5, 422–435. doi: 10.31241/FNS.2018.15.064. |
Geological map of the Olkhon region (Fedorovsky, 2004, with additions by the authors). 1–gabbro, diorites, granodiorite, Khaidai complex; 2–gabbro, Ozersky complex; 3– granite; 4–granite-gneisses and migmatites, Sharanur complex; 5–dolomite marbles and volcano-terrigenous rocks (Anga series); 6–calcite marbles, gneisses, amphibolites, quartzites (Olkhon series); 7–shear zones. γPR2 - porphiritic granites of the Primorsky complex, PR2hr - Khargituisky stratum. Pegmatite dykes NNW striking: 1, Iliksin; 2–Naryn-Kunta; 3–Aya; 4–Ulan-Nur; 5–Tashkiney. The objects of the study are shown as ovals out of scale. Inset shows: 1–northern part of CAOB, 2–the location of the Olkhon region.
The outcrops photo of migmatite (a), granite-gneisse (b) and melted biotite granite (c) of the Sharanur granite-gneisses dome near Lake Sharanur on the Olkhon Island.
K2O vs. Na2O for the Sharanur and Anga complex granitic rocks and pegmatites of various types in the Olkhon region.
Field photographs of Aya massif (b), the outcrop (a) and sample of middle-sized biotite granite (c) and back-scattered electron images of zircon (d) from Aya pegmatite.
Geological Map of Aya massif by (Ivanov AN, Shmakin BM, 1980) with additions by the authors. 1-2–Quaternary alluvial and deluvial deposits; 3–marble; 4–amphibolite, Anga series, PZ2; 5–biotite granite, 1 phase; 6–granite 2 phase, with muscovite and fluorite; 7–granite 3 phase, with rare metal minerals; 8–amazonite pegmatite; 9–quartz vein; 10–faults.
Concordia diagrams for zircons from Aya amazonite pegmatites (a, b) and from the Southern Iliksin pegmatite (sample PR-617) (c) and Northern Iliksin rare-metal pegmatite (sample PR-616) (d).
Vertical section of the Iliksin pegmatite vein in gabbro of the Bugul ’deyka massif.
A. Schematic geological structure of the Tashkiney pegmatite with Be-mineralization:
U–Pb concordia diagram for zircons from the Tashkiney coarse-grained rare-metal pegmatites with Be-mineralization (sample shrn-137), U-Pb ID-TIMS method.
A satellite image of the Olkhon region. The direction of the Middle Paleozoic fracturing is shown by red lines: from west to east, the 1st crack is made of medium-grained granite, the 3nd one is made of rare-metal pegmatite of Tashkiney.
Correlation diagrams of rare elements ratios in the granite and pegmatite Sharanur and Aya complexes.
Spider diagrams of the distribution of rare (a) and rare-earth elements (b) in Sharanur granitic rocks and in the Aya complex of amazonite granite and rare-metal pegmatites. 1–rare metal pegmatites with Be-mineralization, Tashkiney; 2–Southern Iliksin pegmatites; 3–Nothern Iliksin rare metal pegmatite; 4–Aya pegmatite; 5–Ulan-Nur pegmatite; 6–average composition of the Sharanur granite (grey field in the diagram). All element contents are normalized to the average composition of the continental crust (Rudnick RL et al., 2003) (Fig. 12a); LC– compositions of the lower continental crust, UC–upper continental crust. The contents of rare-earth elements (REE) (Fig. 12b) are normalized to chondrite composition (C1) (McDonough WF et al., 1995).
Geotectonic discrimination diagrams for the granite and pegmatites of Sharanur and Aya complexes, Olkhon region: a, Rb-(Y+Nb); b, Rb-(Yb+Ta), according to Pearce J.A. (Pearce JA et al., 1984; Pearce JA, 1996). 1, rare-metal pegmatites with Be-mineralization, Tashkiney; 2, Iliksin South pegmatites; 3, Iliksin North pegmatites; 4, Ayа pegmatites; 5, Ulan-Nur pegmatites; 6, schlieren pegmatites of the Sharanur complex; 7, K-granites and leucogranites, Sharanur complex. Abbreviations: syn-COLG - syncollision granites, ORG - ocean ridge granites, VAG- volcanic arc granites, WPG - intraplate granites. Fields on diagrams a and b (highlighted by an oval): rare-metal pegmatites.