Citation: | Tian Qiu, Fa-hui Xiong, David G. Gee, Yuan Li, Jing-sui Yang, 2024. Multi-stage formation of the Feragen ophiolite, Norway: Implication from petrology and geochemistry of peridotites and chromitites and its potential for prospecting, China Geology, 7, 686-701. doi: 10.31035/cg2023017 |
The ultramafic massif of Feragen, which belongs to the eastern ophiolitic belt of Norway, has abundant amounts of chromite ores. Recent studies have revealed a complex melt evolution in a supra-subduction zone (SSZ) environment. This study presents new whole-rock major element, trace element, and platinum-group element chemistry to evaluate their petrogenesis and tectonic evolution. Harzburgites have high CaO, Al2O3, TiO2, MgO, and REE contents corresponding to abyssal peridotites, whereas dunites have low CaO, Al2O3, TiO2, MgO, and REE contents corresponding to SSZ peridotites. The Cr# and TiO2 of chromian spinels in the harzburgites suggest as much as about 15%–20% melting and the dunites are more depleted with > 40% melting. The harzburgites and the dunites and high-Cr chromitites represent, respectively, the products of low-degree partial melting in a back-arc setting, and the products of melt-rock interaction in a SSZ environment. The calculated ƒO2 values for dunites and high-Cr chromitites (−0.17 – +0.23 and +2.78 – +5.65, respectively and generally above the FMQ buffer) are also consistent with the interaction between back-arc ophiolites with oxidized boninitic melts in a SSZ setting.
Ahmed A, Arai S. 2002. Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contributions to Mineralogy and Petrology, 143, 263–278. doi: 10.1007/s00410-002-0347-8. |
Arai S, Yurimoto H. 1994. Podiform chromitites of the Tari-Misaka ultramafic complex, Southwestern Japan, as mantle–melt interaction products. Economic Geology, 89, 1279–1288. doi: 10.2113/gsecongeo.89.6.1279. |
Arai S. 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chemical Geology, 113, 191–204. doi: 10.1016/0009-2541(94)90066-3. |
Arai S, Kadoshima K, Morishita T. 2006. Widespread arc-related melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian chromian spinels. Journal of the Geological Society, 163, 869–879. doi: 10.1144/0016-76492005-057. |
Arculus RJ. 1994. Aspects of magma genesis in arcs. Lithos, 33, 1–3, 189–208. doi: 10.1016/0024-4937(94)90060-4. |
Augé T. 1987. Chromite deposits in the northern Oman ophiolite: mineralogical constraints. Mineralium Deposita, 22, 1–10. doi: 10.1007/bf00204235. |
Ballhaus C. 1998. Origin of podiform chromite deposits by magma mingling. Earth and Planetary Science Letters, 156, 185–193. doi: 10.1016/S0012-821X(98)00005-3. |
Ballhaus C, Berry RF, Green DH. 1991. High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen barometer: implications for the oxidation state for the upper mantle. Contribution to Mineralogy and Petrology, 107, 27–40. doi: 10.1007/BF00311183. |
Barnes SJ, Boyd R, Korneliussen A, Nilsson LP, Often M, Pedersen RB, Robins B. 1988. The use of mantle normalization and metal rations in discriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinum-group elements, gold, nickel and copper: examples from Norway. In: Prichard HM, Potts PJ, Bowles JFW, Cribb SJ. (eds.), Geo-Platinum Symposium Volume. Elsevier, London, 113–143. doi: 10.1007/978-94-009-1353-0_12. |
Barnes SJ, Roeder PL. 2001. The range of spinel composition in terrestrial mafic and ultramafic rocks. Contribution to Mineralogy and Petrology, 42, 2279–2302. doi: 10.1093/petrology/42.12.2279. |
Beccaluva L, Coltorti M, Premti I, Saccani E, Siena F, And Zeda O. 1994. Mid-ocean ridge and supra-subduction affinities in ophiolitic belts from Albania. In: Beccaluva L (Ed.), Albanian Ophiolites: State of the Art and Perspectives. Ofioliti, 19, 77–96. |
Beccaluva L, Ohnenstetter D, Ohnenstetter M, Paupy A. 1984. Two magmatic series with island arc affinities within the Vourinos ophiolite. Contributions to Mineralogy and Petrology, 85, 253–271. doi: 10.1007/BF00378104. |
Beinlich A, Austrheim H. 2012. In situ sequestration of atmospheric CO2 at low temperature and surface cracking of serpentinized peridotite in mine shafts. Chemical Geology, 332-333, 32–34. doi: 10.1016/j.chemgeo.2012.09.015. |
Beinlich A, Austrheim H, Mavromatis V, Grguric B, Putnis CV, Putnis A. 2018. Peridotite weathering is the missing ingredient of Earth’s continental crust composition. Nature Communications, 9, 634. doi: 10.1038/S41467-018-03039-9. |
Bodinier JL, Godard M. 2003. Orogenic, ophiolitic, and abyssal peridotites. In: Carlson RW (Ed.), Mantle and Core. Treatise on GeochemTreatise on Geochemistry 2. Elsevier Science Ltd., 103–170. doi: 10.1016/B978-0-08-095975-7.00204-7. |
Borisova A, Ceuleneer G, Kamenetsky V, Arai S, Béjina F, Bindeman I, Polvé M, de Parseval P, Aigouy T, Pokrovski G. 2012. A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions. Journal of Petrology, 53, 2411–2440. doi: 10.1093/petrology/egs054. |
Chou CL, Shaw DM, Crocket JH. 1983. Siderophile trace elements in Earth’s oceanic crust and upper mantle. Journal of Geophysical Research, 88(S2), 507–518. doi: 10.1029/JB088iS02p0A507. |
Dai JG, Wang CS, Hebert R, Santosh M, Li YL, Xu JY. 2011. Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: Implications for the early subduction zone within the Neo–Tethys. Lithos, 288(3-4), 133–148. doi: 10.1016/j.chemgeo.2011.07.011. |
Dare SAS, Pearce JA, McDonald I, Styles MT. 2009. Tectonic discrimination of peridotites using ƒO2–Cr# and Ga–Ti–FeIII systematic in chrome-spinel. Chemical Geology, 261, 199–216. doi: 10.1016/j.chemgeo.2008.08.002. |
Dick HJ, Bullen T. 1984. Chromian magnesiochromite as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86, 54–76. doi: 10.1007/BF00373711. |
Dick HJ, Natland JH. 1996. Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. Proceedings-Ocean Drilling Program Scientific Results. National Science Foundation, 103–134. doi: 10.2973/odp.proc.sr.147.007.1996. |
Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123, 387–411. doi: 10.1130/B30446.1. |
Dilek Y, Furnes H. 2014. Ophiolites and their origins. Elements, 10, 93–100. doi: 10.2113/GSELEMENTS.10.2.93. |
Dilek Y, Robinson PT. 2003. Ophiolites in Earth History: Introduction, in Dilek Y, Robinson PT. (eds.), Ophiolites in Earth History. Geological Society, London, Special Publication, 218, 1–8. doi: 10.1144/GSL.SP.2003.218.01.01. |
Dunkel KG, Jamtveit B, Austrheim H. 2019. Ophiocarbonates of the Feragen ultramafic body, central Norway. Norwegian Journal of Geology, 99, 1–18. doi: 10.17850/njg99-3-3. |
Gervilla F, Proenza JA, Frei R, González-Jiménez JM, Garrido CJ, Melgarejo JC, Meibom A, Díaz-martínez R, Lavaut W. 2005. Distribution of platinum-group elements and Os isotopes in chromite ores from Mayarí-Baracoa ophiolilte belt (eastern Cuba). Contributions to Mineralogy and Petrology, 150, 589–607. doi: 10.1007/s00410-005-0039-2. |
Ghiorso MS, Hirschmann MM, Reiners PW, Kress III VC. 2002. The pMELTS: a revision of MELTS aimed at improving calculation of phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochemistry Geophysics Geosystems, 3 (5). doi: 10.1029/2001GC000217. |
Godard M, Jousselin D, Bodinier JL. 2000. Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth and Planetary Science Letters, 180, 133–148. doi: 10.1016/S0012-821X(00)00149-7. |
Hamlyn PR, Keays RR, Cameron WE, Crawford AJ, Waldron HM. 1985. Precious metals in magnesian low-Ti lavas: implications for metallogenesis and sulfur saturation in primary magmas. Geochimica et Cosmochimica Acta, 49, 1797–1811. doi: 10.1016/0016-7037(85)90150-4. |
Jackson SE, Fryer BJ, Gosse W, Healey DC, Longerich HP, Strong DF. 1990. Determination of the precious metals in geological materials by inductively coupled plasma-mass spectrometry (ICP-MS) with nickel sulphide fire-assay collection and tellurium coprecipitation. Chemical Geology, 83(1–2), 119–132. doi: 10.1016/0009-2541(90)90144-V. |
Kamenetsky VS, Crawford AJ, Meffre S. 2001. Factors controlling chemistry of magmatic magnesiochromite: an empirical study of associated olivine, Cr-magnesiochromite and melt inclusions from primitive rocks. Journal of Petrology, 42, 655–671. doi: 10.1093/petrology/42.4.655. |
Li JQ, Zhang YS, Li X, Ren SS, Ran LN. 2023. Identification of clayey altered ophiolite in the Nujiang tectonic belt and new understanding of its impacts on engineering stability. China Geology, 6(4), 756–758. doi: 10.31035/cg2023076. |
Maurel C, Maurel P. 1982. Experimental study of the solubility of chromium in mafic silicate baths and its partitioning between liquid and coexisting minerals: conditions of existence of chromian magnesiochromite. Bulletin de minéralogie, 105, 640–647. |
McDonough WF, Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3), 223–254. doi: 10.1016/0009-2541(94)00140-4. |
Melcher F, Grum W, Thalhammer T, Thalhammer O. 1999. The giant chromite deposits at Kempirsai, Urals: constraints from trace element (PGE, REE) and isotope data. Mineralium Deposita, 34, 250–272. doi: 10.1007/s001260050202. |
Miller C, Thöni M, Frank W, Schuster R, Melcher F, Meisel T, Zanetti A. 2003. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos, 66, 155–172. doi: 10.1016/S0024-4937(02)00217-7. |
Moore AC, Hultin I. 1980. Petrology, mineralogy, and origin of the Feragen ultramafic body, Sør-Trøndelag, Norway. Norsk Geologisk Tidsskrift, 60, 235–254. doi: 10.1007/978-94-009-8117-1. |
Moores EM. 1982. Origin and emplacement of ophiolites. Reviews of Geophysics, 20, 735–760. doi: 10.1029/RG020i004p00735. |
Nakamura M. 1995. Residence time and crystallization history of nickeliferous olivine phenocrysts from the northern Yatsugatake volcanoes, Central Japan: application of a growth and diffusion model in the system Mg-Fe-Ni. Journal of Volcanology and Geothermal Research, 66, 81–100. doi: 10.1016/0377-0273(94)00054-K. |
Nilsson LP, Roberts D. 2014. A trail of ophiolitic debris and its detritus along the Trøndelag-Jämtland border: correlations and palaeogreographical implications. Norges Geologiske undersø kelse Bulletin, 453, 29–41. |
Nilsson LP, Roberts D, Ramsay DM. 2005. Te Raudfellet ophiolite fragment, Central Norwegian Caledonides: pricipal lithological and structural features. Norges Geologiske undersø kelse Bulletin, 445, 101–117. |
Nilsson LP, Sturt BA, Ramsay DM. 1997. Ophiolitic ultramaftes in the Folldal-Røros tract, and their Cr-(PGE) mineralization (Extended abstract). Norges Geologiske undersø kelse Bulletin, 433, 10–11. |
Niu Y. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45, 2423–2458. doi: 10.1093/petrology/egh068. |
Niu Y, Langmuir CH, Kinzler RJ. 1997. The origin of abyssal peridotites: a new perspective. Earth and Planetary Science Letters, 152(1), 251–265. doi: 10.1016/S0012-821X(97)00119-2. |
O’Neill H, Wall V. 1987. The olivine–orthopyroxene–spinel oxygen geobarometer, the nickel precipitation curve and the oxygen fugacity of the earth upper mantle. Journal of Petrology, 28, 169–1191. doi: 10.1093/petrology/28.6.1169. |
Ozawa K. 1994. Melting and melt segregation in the mantle wedge above a subduction zone: evidence from the chromite-bearing peridotites of the Miyamori Ophiolite Complex, northeastern Japan. Journal of Petrology, 35, 647–678. doi: 10.1093/petrology/35.3.647. |
Pagé P, Barnes SJ. 2009. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford mines ophiolite, Québec, Canada. Economic Geology, 104, 997–1018. doi: 10.2113/econgeo.104.7.997. |
Pagé P, Bédard JH, Schroetter JM, Tremblay A. 2008. Mantle petrology and mineralogy of the Thetford Mines ophiolite complex. Lithos, 100, 255–292. doi: 10.1016/j.lithos.2007.06.017. |
Palme H, O’Neill HSC. 2004. Cosmochemical estimates of mantle composition. In:Holland HD, TurrekianKK.(eds.), –38. doi: 10.1016/B0-08-043751-6/02177-0. |
Parkinson IJ, Arculus RJ. 1999. The redox state of subduction zones: insights from arc-peridotites. Chemical Geology, 160, 409–423. doi: 10.1016/s0009-2541(99)00110-2. |
Parkinson IJ, Pearce JA. 1998, Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39, 1577–1618. doi: 10.1093/petroj/39.9.1577. |
Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139, 36–53. doi: 10.1007/s004100050572. |
Pearce JA, Lippard SJ, Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP, Howells MF. (eds.), Marginal Basin Geology. Geological Society of London Special Publication, 16, 77–89. doi: 10.1144/GSL.SP.1984.016.01.06. |
Qiao GB, Li WM, Li TH. 2023. SHRIMP zircon U-Pb age and O isotopic analysis of the dunite from Kudi ophiolite in the West Kunlun, China. China Geology, 6(1), 171–173. doi: 10.31035/cg2021047. |
Roberts D. 1974. Sedimentary, tectonic and metamorphic features of the Devonian of Røragen, Sør-Trøndelag. Norges Geologiske undersø kelse Bulletin, 311, 89–108. |
Robinson PT, Trumbull RB, Schmitt A, Yang JS, Li JW, Zhou MF, Erzinger J, Dare S, Xiong FH. 2015. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Research, 27, 486–506. doi: 10.1016/j.gr.2014.06.003. |
Rollinson H. 2008. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions. Contributions to Mineralogy and Petrology, 156, 273–288. doi: 10.1007/s00410-008-0284-2. |
Sack RO, Ghiosro MS. 1991. Chromian spinel as petrogenetic indicators: thermodynamics and petrological applications. American Mineralogist, 76, 827–847. doi: 10.1180/minmag.1991.055.379.18. |
Shervais JW. 2001. Birth, death, and resurrection: the life cycle of suprasubduction zone ophiolites. Geochemistry, Geophysics, Geosystems, 2(1), 148–159. doi: 10.1029/2000GC000080. |
Smith SE, Elthon D. 1988. Mineral compositions of plutonic rocks from the Lewis Hills massif, Bay of Islands ophiolite. Journal of Geophysical research, 93, 3450–3468. doi: 10.1029/JB093iB04p03450. |
Sun M, Jain J, Zhou M, Kerrich R. 1993. A procedural modification for enhanced recovery of precious metals (Au, PGE) following nickel sulphide fire assay and tellurium co-precipitation: applications for analysis of geological samples by inductively coupled plasma mass spectrometry. Canadian journal of applied spectroscopy, 38, 103–108. |
Sun Y, Sun M. 2005. Nickel sulfide fire assay improved for pre-concentration of platinum-group elements in geological samples: a practical means of ultra-trace analysis combined with inductively coupled plasma-mass spectrometry. Analyst, 130, 664–669. doi: 10.1039/b416844e. |
Ulven IO, Hovelmann J, Austrheim H, Jamtveit B, Beinlich A. 2017. Subarctic physiochemical weathering of serpentinized peridotite. Earth and Planetary Science Letters, 486, 11–26. doi: 10.1016/j.jpgl.2017.03.030. |
Uysal I, Akmaz RM, Kapsiotis A, Demir Y, Saka S, Avcı E, Müller D. 2015. Genesis and geodynamic significance of chromitites from the Orhaneli and Harmancık ophiolites (Bursa, NW Turkey) as evidenced by mineralogical and compositional data. Ore Geology Reviews, 65, 26–41. doi: 10.1016/j.oregeorev.2014.08.006. |
Uysal I, Sadiklar M, Tarkian M, Karsli O, Aydin F. 2005. Mineralogy and composition of the chromitites and their platinum-group minerals from Ortaca (Muğla-SW Turkey): evidence for ophiolitic chromitite genesis. Mineralogy and Petrology, 83, 219–242. doi: 10.1007/s00710-004-0063-3. |
Uysal I, Tarkian M, Sadiklar MB, Zaccarini F, Meisel T, Garuti G, Heidrich S. 2009. Petrology of Al- and Cr-rich ophiolitic chromitites from the Mugla, SW Turkey: implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-Isotope geochemistry. Contributions to Mineralogy and Petrology, 158, 659–674. doi: 10.1007/s00410-009-0402-9. |
Uysal IM, Kaliwoda M, Karsli O, Tarkian M, Sadiklar MB, Ottley CJ. 2007. Compositional variations as a result of partial melting and melt–peridotite interaction in an upper mantle section from the Ortaca area, southwestern Turkey. The Canadian Mineralogist, 45, 1471–1493. doi: 10.3749/canmin.45.6.1471. |
Wan Z, Laurence A, Coogan LA, Canil D. 2008. Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. American Mineralogist, 93, 1142–1147. doi: 10.2138/am.2008.2758. |
Wilson M. 1989. Igneous Petrogenesis. Unwin Hyman, London. pp 446. |
Xiong FH, Basem Z, Xu XZ, Davide L, Yang JS. 2022. Genesis and high-pressure evolution of the Koycegiz ophiolite (SW Turkey): mineralogical and geochemical characteristics of podiform chromitites. Ore Geology Reviews, 145, 104912. doi: 10.1016/j.oregeorev.2022.104912. |
Xiong FH, Yang JS, Robinson PT, Xu XZ, Liu Z, Li Y, Li JY, Chen SY. 2015. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27(2), 525–542. doi: 10.1016/j.gr.2014.04.008. |
Yamamoto S, Komiya T, Hirose K, Maruyama S. 2009. Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos, 109, 314–322. doi: 10.1016/j.lithos.2008.05.003. |
Yang JS, Robinson PT, Dilek Y. 2014. Diamonds in ophiolites. Elements, 10, 127–130. doi: 10.2113/gselements.10.2.127. |
Yang JS, Robinson PT, Xu X, Dilek Y. 2013. Ophiolite-type diamond: a new occurrence of diamond on the Earth. EGU General Assembly Conference Abstracts, 13613. |
Zhou MF, Robinson PT, Bai WJ. 1994. Formation of podiform chromitites by melt/rock interaction in the upper mantle. Mineralium Deposita 29(1), 98–101. doi: 10.1007/BF03326400. |
Zhou MF, Robinson PT, Malpas J, Li ZJ. 1996. Podiform chromitites in the Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37, 3–21. doi: 10.1093/petrology/37.1.3. |
Zhou MF, Robinson PT, Malpas J, Edwards SJ, Qi L. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. Journal of Petrology, 46, 615–639. doi: 10.1093/petrology/egh091. |
Zhou MF, Robinson PT, Su BX, Gao JF, Li JW, Yang JS, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: the role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research, 26(1), 262–283. doi: 10.1016/j.gr.2013.12.011. |
Zhou MF, Sun M, Keays RR, Kerrich RW. 1998. Controls on platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62, 677–688. doi: 10.1016/S0016-7037(97)00382-7. |
Simplified tectonostratigraphic map of the Feragen ophiolite, Norway (modified from Moore AC and Hultin I, 1980).
Field photographs showing the various lithologies in the Feragen ophiolite. a–The Feragen ultramafic rocks; b and c–Dunite veins in harzburgite; d–Disseminated chromite ore.
Photomicrographs of peridotites and chromitites in the Feragen ophiolite. a–Harzburgite; coarse-grained olivine coexisting with orthopyroxene, granular texture (cross-polarized light); b–Dunite; olivine altered by serpentine along cracks and boundaries (cross-polarized light); c–Disseminated chromitites; olivine has been mostly altered by serpentine (plane-polarized light); d–Chromian spinels altered to ferrit-chromite or magnetite along boundaries and fractures in the disseminated chromitites (reflected light). Ol–olivine; Opx–orthopyroxene; Spl–chromian spinel; Cpx–clinopyroxene; Srp–serpentine; Ferrit-chr–Ferrit-chromite; Mgt–magnetite.
NiO (a) and MnO (b) vs. Fo contents of olivine in the different lithologies of the Feragen ophiolite. ABP–abyssal peridotite and FAP–fore-arc peridotite from Pagé P et al. (2008), partial melting trends from Ozawa K (1994), and fractionation trends from Ozawa K (1994) and Nakamura M (1995).
Compositional range of orthopyroxene (a–b) and clinopyroxene (c–d) in harzburgites of the Feragen ophiolite. ABP-abyssal peridotite and FAP-fore-arc peridotite from Pagé P et al. (2008). The melting trend from Smith SE and Elthon D (1988).
Harker diagrams of the whole-rock compositional range of harzburgites and dunites in the Feragen ophiolite. Abyssal and SSZ peridotite fields from Niu Y et al. (1997), Parkinson IJ and Pearce JA (1998) and Uysal I et al. (2009). The residual compositions from melting (at 1×109 Pa and 2×109 Pa) of Primitive Mantle (Palme H and O’Neill HSC, 2004) calculated using pMELTS program of maximum 40% melting degree (Ghiorso MS et al., 2002) are also shown in the diagram.
Variation diagrams of MgO vs. Y (a), Sc (b), V (c), and Yb (d) in harzburgite and dunite samples of the Feragen ophiolite. Abyssal and SSZ peridotite fields from Niu Y et al. (1997) and Parkinson IJ and Pearce JA (1998), respectively.
a–Chondrite-normalized REE patterns of dunites and harzburgites in the Feragen ophiolite (normalized after McDonough WF and Sun SS, 1995). b–Primitive mantle-normalized trace element spider diagrams of dunites and harzburgites in the Feragen mantle ophiolite (normalized after McDonough WF and Sun SS, 1995). Fields of abyssal peridotites (afterBodinier JL and Godard M, 2003; Niu Y, 2004) and forearc peridotites (Parkinson IJ and Pearce JA, 1998) are shown for comparison. The compositions of harzburgites sampled in the Semail (Oman) ophiolite from Godard M et al. (2000).
a–Primitive mantle-normalized PGE patterns of the Feragen peridotite and chromitites (normalized after Barnes SJ et al. (1988); b–Iridium vs. palladium of the peridotites and chromitites in the Feragen ophiolite. Chondritic ratio and mantle values from Chou CL et al. (1983). MORB and low-Ti lava fields from Hamlyn PR et al. (1985); c–Platinum/iridium vs. palladium/platinum for peridotites and chromitites in the Feragen ophiolite. Primitive mantle values from Barnes SJ et al. (1988).
a–Plot of ΔlogƒO2 (FMQ) vs. Cr# of spinels from the Feragen chromitite, harzburgites and dunites. We have calculated ΔlogƒO2 (Ballhaus C et al., 1991) from geothermometric data derived from olivine - spinel equilibria following the approach of Wan Z et al. (2008); the data are provided in Table 6. MOR–SSZ discrimination boundaries for dunites (solid line) and harzburgites (dashed line) are shown. MOR–mid-ocean ridge, SSZ–supra-subduction zone, BAB–back arc basin, BON–boninite, IAT–island arc tholeiite (Parkinson IJ and Pearce JA, 1998; Dare SAS et al., 2009); b–(FeO/MgO) melt vs (Al2O3) melt (%) calculated on the basis of the chemical composition of the Feragen dunites and chromitites. Tectonic discrimination fields from Barnes SJ and Roeder PL (2001).
a–Compositional range of chromian spinel in different lithologies of the Feragen ophiolite after Pearce JA et al. (2000). Data of spinels of MORB, forearc peridotites and boninites are form Izu-Bonin-Mariana system (Pearce JA et al., 2000, and references there in); b–Compositional relationship between Cr# and TiO2 content of spinel in peridotite and chromitite samples.