2024 Vol. 7, No. 4
Article Contents

Tian Qiu, Fa-hui Xiong, David G. Gee, Yuan Li, Jing-sui Yang, 2024. Multi-stage formation of the Feragen ophiolite, Norway: Implication from petrology and geochemistry of peridotites and chromitites and its potential for prospecting, China Geology, 7, 686-701. doi: 10.31035/cg2023017
Citation: Tian Qiu, Fa-hui Xiong, David G. Gee, Yuan Li, Jing-sui Yang, 2024. Multi-stage formation of the Feragen ophiolite, Norway: Implication from petrology and geochemistry of peridotites and chromitites and its potential for prospecting, China Geology, 7, 686-701. doi: 10.31035/cg2023017

Multi-stage formation of the Feragen ophiolite, Norway: Implication from petrology and geochemistry of peridotites and chromitites and its potential for prospecting

More Information
  • The ultramafic massif of Feragen, which belongs to the eastern ophiolitic belt of Norway, has abundant amounts of chromite ores. Recent studies have revealed a complex melt evolution in a supra-subduction zone (SSZ) environment. This study presents new whole-rock major element, trace element, and platinum-group element chemistry to evaluate their petrogenesis and tectonic evolution. Harzburgites have high CaO, Al2O3, TiO2, MgO, and REE contents corresponding to abyssal peridotites, whereas dunites have low CaO, Al2O3, TiO2, MgO, and REE contents corresponding to SSZ peridotites. The Cr# and TiO2 of chromian spinels in the harzburgites suggest as much as about 15%–20% melting and the dunites are more depleted with > 40% melting. The harzburgites and the dunites and high-Cr chromitites represent, respectively, the products of low-degree partial melting in a back-arc setting, and the products of melt-rock interaction in a SSZ environment. The calculated ƒO2 values for dunites and high-Cr chromitites (−0.17 – +0.23 and +2.78 – +5.65, respectively and generally above the FMQ buffer) are also consistent with the interaction between back-arc ophiolites with oxidized boninitic melts in a SSZ setting.

  • 加载中
  • Ahmed A, Arai S. 2002. Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contributions to Mineralogy and Petrology, 143, 263–278. doi: 10.1007/s00410-002-0347-8.

    CrossRef Google Scholar

    Arai S, Yurimoto H. 1994. Podiform chromitites of the Tari-Misaka ultramafic complex, Southwestern Japan, as mantle–melt interaction products. Economic Geology, 89, 1279–1288. doi: 10.2113/gsecongeo.89.6.1279.

    CrossRef Google Scholar

    Arai S. 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chemical Geology, 113, 191–204. doi: 10.1016/0009-2541(94)90066-3.

    CrossRef Google Scholar

    Arai S, Kadoshima K, Morishita T. 2006. Widespread arc-related melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian chromian spinels. Journal of the Geological Society, 163, 869–879. doi: 10.1144/0016-76492005-057.

    CrossRef Google Scholar

    Arculus RJ. 1994. Aspects of magma genesis in arcs. Lithos, 33, 1–3, 189–208. doi: 10.1016/0024-4937(94)90060-4.

    Google Scholar

    Augé T. 1987. Chromite deposits in the northern Oman ophiolite: mineralogical constraints. Mineralium Deposita, 22, 1–10. doi: 10.1007/bf00204235.

    CrossRef Google Scholar

    Ballhaus C. 1998. Origin of podiform chromite deposits by magma mingling. Earth and Planetary Science Letters, 156, 185–193. doi: 10.1016/S0012-821X(98)00005-3.

    CrossRef Google Scholar

    Ballhaus C, Berry RF, Green DH. 1991. High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen barometer: implications for the oxidation state for the upper mantle. Contribution to Mineralogy and Petrology, 107, 27–40. doi: 10.1007/BF00311183.

    CrossRef Google Scholar

    Barnes SJ, Boyd R, Korneliussen A, Nilsson LP, Often M, Pedersen RB, Robins B. 1988. The use of mantle normalization and metal rations in discriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinum-group elements, gold, nickel and copper: examples from Norway. In: Prichard HM, Potts PJ, Bowles JFW, Cribb SJ. (eds.), Geo-Platinum Symposium Volume. Elsevier, London, 113–143. doi: 10.1007/978-94-009-1353-0_12.

    Google Scholar

    Barnes SJ, Roeder PL. 2001. The range of spinel composition in terrestrial mafic and ultramafic rocks. Contribution to Mineralogy and Petrology, 42, 2279–2302. doi: 10.1093/petrology/42.12.2279.

    CrossRef Google Scholar

    Beccaluva L, Coltorti M, Premti I, Saccani E, Siena F, And Zeda O. 1994. Mid-ocean ridge and supra-subduction affinities in ophiolitic belts from Albania. In: Beccaluva L (Ed.), Albanian Ophiolites: State of the Art and Perspectives. Ofioliti, 19, 77–96.

    Google Scholar

    Beccaluva L, Ohnenstetter D, Ohnenstetter M, Paupy A. 1984. Two magmatic series with island arc affinities within the Vourinos ophiolite. Contributions to Mineralogy and Petrology, 85, 253–271. doi: 10.1007/BF00378104.

    CrossRef Google Scholar

    Beinlich A, Austrheim H. 2012. In situ sequestration of atmospheric CO2 at low temperature and surface cracking of serpentinized peridotite in mine shafts. Chemical Geology, 332-333, 32–34. doi: 10.1016/j.chemgeo.2012.09.015.

    Google Scholar

    Beinlich A, Austrheim H, Mavromatis V, Grguric B, Putnis CV, Putnis A. 2018. Peridotite weathering is the missing ingredient of Earth’s continental crust composition. Nature Communications, 9, 634. doi: 10.1038/S41467-018-03039-9.

    CrossRef Google Scholar

    Bodinier JL, Godard M. 2003. Orogenic, ophiolitic, and abyssal peridotites. In: Carlson RW (Ed.), Mantle and Core. Treatise on GeochemTreatise on Geochemistry 2. Elsevier Science Ltd., 103–170. doi: 10.1016/B978-0-08-095975-7.00204-7.

    Google Scholar

    Borisova A, Ceuleneer G, Kamenetsky V, Arai S, Béjina F, Bindeman I, Polvé M, de Parseval P, Aigouy T, Pokrovski G. 2012. A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions. Journal of Petrology, 53, 2411–2440. doi: 10.1093/petrology/egs054.

    CrossRef Google Scholar

    Chou CL, Shaw DM, Crocket JH. 1983. Siderophile trace elements in Earth’s oceanic crust and upper mantle. Journal of Geophysical Research, 88(S2), 507–518. doi: 10.1029/JB088iS02p0A507.

    CrossRef Google Scholar

    Dai JG, Wang CS, Hebert R, Santosh M, Li YL, Xu JY. 2011. Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: Implications for the early subduction zone within the Neo–Tethys. Lithos, 288(3-4), 133–148. doi: 10.1016/j.chemgeo.2011.07.011.

    CrossRef Google Scholar

    Dare SAS, Pearce JA, McDonald I, Styles MT. 2009. Tectonic discrimination of peridotites using ƒO2–Cr# and Ga–Ti–FeIII systematic in chrome-spinel. Chemical Geology, 261, 199–216. doi: 10.1016/j.chemgeo.2008.08.002.

    CrossRef Google Scholar

    Dick HJ, Bullen T. 1984. Chromian magnesiochromite as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86, 54–76. doi: 10.1007/BF00373711.

    CrossRef Google Scholar

    Dick HJ, Natland JH. 1996. Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. Proceedings-Ocean Drilling Program Scientific Results. National Science Foundation, 103–134. doi: 10.2973/odp.proc.sr.147.007.1996.

    Google Scholar

    Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123, 387–411. doi: 10.1130/B30446.1.

    CrossRef Google Scholar

    Dilek Y, Furnes H. 2014. Ophiolites and their origins. Elements, 10, 93–100. doi: 10.2113/GSELEMENTS.10.2.93.

    CrossRef Google Scholar

    Dilek Y, Robinson PT. 2003. Ophiolites in Earth History: Introduction, in Dilek Y, Robinson PT. (eds.), Ophiolites in Earth History. Geological Society, London, Special Publication, 218, 1–8. doi: 10.1144/GSL.SP.2003.218.01.01.

    Google Scholar

    Dunkel KG, Jamtveit B, Austrheim H. 2019. Ophiocarbonates of the Feragen ultramafic body, central Norway. Norwegian Journal of Geology, 99, 1–18. doi: 10.17850/njg99-3-3.

    CrossRef Google Scholar

    Gervilla F, Proenza JA, Frei R, González-Jiménez JM, Garrido CJ, Melgarejo JC, Meibom A, Díaz-martínez R, Lavaut W. 2005. Distribution of platinum-group elements and Os isotopes in chromite ores from Mayarí-Baracoa ophiolilte belt (eastern Cuba). Contributions to Mineralogy and Petrology, 150, 589–607. doi: 10.1007/s00410-005-0039-2.

    CrossRef Google Scholar

    Ghiorso MS, Hirschmann MM, Reiners PW, Kress III VC. 2002. The pMELTS: a revision of MELTS aimed at improving calculation of phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochemistry Geophysics Geosystems, 3 (5). doi: 10.1029/2001GC000217.

    Google Scholar

    Godard M, Jousselin D, Bodinier JL. 2000. Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth and Planetary Science Letters, 180, 133–148. doi: 10.1016/S0012-821X(00)00149-7.

    CrossRef Google Scholar

    Hamlyn PR, Keays RR, Cameron WE, Crawford AJ, Waldron HM. 1985. Precious metals in magnesian low-Ti lavas: implications for metallogenesis and sulfur saturation in primary magmas. Geochimica et Cosmochimica Acta, 49, 1797–1811. doi: 10.1016/0016-7037(85)90150-4.

    CrossRef Google Scholar

    Jackson SE, Fryer BJ, Gosse W, Healey DC, Longerich HP, Strong DF. 1990. Determination of the precious metals in geological materials by inductively coupled plasma-mass spectrometry (ICP-MS) with nickel sulphide fire-assay collection and tellurium coprecipitation. Chemical Geology, 83(1–2), 119–132. doi: 10.1016/0009-2541(90)90144-V.

    Google Scholar

    Kamenetsky VS, Crawford AJ, Meffre S. 2001. Factors controlling chemistry of magmatic magnesiochromite: an empirical study of associated olivine, Cr-magnesiochromite and melt inclusions from primitive rocks. Journal of Petrology, 42, 655–671. doi: 10.1093/petrology/42.4.655.

    CrossRef Google Scholar

    Li JQ, Zhang YS, Li X, Ren SS, Ran LN. 2023. Identification of clayey altered ophiolite in the Nujiang tectonic belt and new understanding of its impacts on engineering stability. China Geology, 6(4), 756–758. doi: 10.31035/cg2023076.

    CrossRef Google Scholar

    Maurel C, Maurel P. 1982. Experimental study of the solubility of chromium in mafic silicate baths and its partitioning between liquid and coexisting minerals: conditions of existence of chromian magnesiochromite. Bulletin de minéralogie, 105, 640–647.

    Google Scholar

    McDonough WF, Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3), 223–254. doi: 10.1016/0009-2541(94)00140-4.

    CrossRef Google Scholar

    Melcher F, Grum W, Thalhammer T, Thalhammer O. 1999. The giant chromite deposits at Kempirsai, Urals: constraints from trace element (PGE, REE) and isotope data. Mineralium Deposita, 34, 250–272. doi: 10.1007/s001260050202.

    CrossRef Google Scholar

    Miller C, Thöni M, Frank W, Schuster R, Melcher F, Meisel T, Zanetti A. 2003. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos, 66, 155–172. doi: 10.1016/S0024-4937(02)00217-7.

    CrossRef Google Scholar

    Moore AC, Hultin I. 1980. Petrology, mineralogy, and origin of the Feragen ultramafic body, Sør-Trøndelag, Norway. Norsk Geologisk Tidsskrift, 60, 235–254. doi: 10.1007/978-94-009-8117-1.

    CrossRef Google Scholar

    Moores EM. 1982. Origin and emplacement of ophiolites. Reviews of Geophysics, 20, 735–760. doi: 10.1029/RG020i004p00735.

    CrossRef Google Scholar

    Nakamura M. 1995. Residence time and crystallization history of nickeliferous olivine phenocrysts from the northern Yatsugatake volcanoes, Central Japan: application of a growth and diffusion model in the system Mg-Fe-Ni. Journal of Volcanology and Geothermal Research, 66, 81–100. doi: 10.1016/0377-0273(94)00054-K.

    CrossRef Google Scholar

    Nilsson LP, Roberts D. 2014. A trail of ophiolitic debris and its detritus along the Trøndelag-Jämtland border: correlations and palaeogreographical implications. Norges Geologiske undersø kelse Bulletin, 453, 29–41.

    Google Scholar

    Nilsson LP, Roberts D, Ramsay DM. 2005. Te Raudfellet ophiolite fragment, Central Norwegian Caledonides: pricipal lithological and structural features. Norges Geologiske undersø kelse Bulletin, 445, 101–117.

    Google Scholar

    Nilsson LP, Sturt BA, Ramsay DM. 1997. Ophiolitic ultramaftes in the Folldal-Røros tract, and their Cr-(PGE) mineralization (Extended abstract). Norges Geologiske undersø kelse Bulletin, 433, 10–11.

    Google Scholar

    Niu Y. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45, 2423–2458. doi: 10.1093/petrology/egh068.

    CrossRef Google Scholar

    Niu Y, Langmuir CH, Kinzler RJ. 1997. The origin of abyssal peridotites: a new perspective. Earth and Planetary Science Letters, 152(1), 251–265. doi: 10.1016/S0012-821X(97)00119-2.

    CrossRef Google Scholar

    O’Neill H, Wall V. 1987. The olivine–orthopyroxene–spinel oxygen geobarometer, the nickel precipitation curve and the oxygen fugacity of the earth upper mantle. Journal of Petrology, 28, 169–1191. doi: 10.1093/petrology/28.6.1169.

    CrossRef Google Scholar

    Ozawa K. 1994. Melting and melt segregation in the mantle wedge above a subduction zone: evidence from the chromite-bearing peridotites of the Miyamori Ophiolite Complex, northeastern Japan. Journal of Petrology, 35, 647–678. doi: 10.1093/petrology/35.3.647.

    CrossRef Google Scholar

    Pagé P, Barnes SJ. 2009. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford mines ophiolite, Québec, Canada. Economic Geology, 104, 997–1018. doi: 10.2113/econgeo.104.7.997.

    CrossRef Google Scholar

    Pagé P, Bédard JH, Schroetter JM, Tremblay A. 2008. Mantle petrology and mineralogy of the Thetford Mines ophiolite complex. Lithos, 100, 255–292. doi: 10.1016/j.lithos.2007.06.017.

    CrossRef Google Scholar

    Palme H, O’Neill HSC. 2004. Cosmochemical estimates of mantle composition. In:Holland HD, TurrekianKK.(eds.), –38. doi: 10.1016/B0-08-043751-6/02177-0.

    CrossRef Google Scholar

    Parkinson IJ, Arculus RJ. 1999. The redox state of subduction zones: insights from arc-peridotites. Chemical Geology, 160, 409–423. doi: 10.1016/s0009-2541(99)00110-2.

    CrossRef Google Scholar

    Parkinson IJ, Pearce JA. 1998, Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39, 1577–1618. doi: 10.1093/petroj/39.9.1577.

    Google Scholar

    Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139, 36–53. doi: 10.1007/s004100050572.

    CrossRef Google Scholar

    Pearce JA, Lippard SJ, Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP, Howells MF. (eds.), Marginal Basin Geology. Geological Society of London Special Publication, 16, 77–89. doi: 10.1144/GSL.SP.1984.016.01.06.

    Google Scholar

    Qiao GB, Li WM, Li TH. 2023. SHRIMP zircon U-Pb age and O isotopic analysis of the dunite from Kudi ophiolite in the West Kunlun, China. China Geology, 6(1), 171–173. doi: 10.31035/cg2021047.

    CrossRef Google Scholar

    Roberts D. 1974. Sedimentary, tectonic and metamorphic features of the Devonian of Røragen, Sør-Trøndelag. Norges Geologiske undersø kelse Bulletin, 311, 89–108.

    Google Scholar

    Robinson PT, Trumbull RB, Schmitt A, Yang JS, Li JW, Zhou MF, Erzinger J, Dare S, Xiong FH. 2015. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Research, 27, 486–506. doi: 10.1016/j.gr.2014.06.003.

    CrossRef Google Scholar

    Rollinson H. 2008. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions. Contributions to Mineralogy and Petrology, 156, 273–288. doi: 10.1007/s00410-008-0284-2.

    CrossRef Google Scholar

    Sack RO, Ghiosro MS. 1991. Chromian spinel as petrogenetic indicators: thermodynamics and petrological applications. American Mineralogist, 76, 827–847. doi: 10.1180/minmag.1991.055.379.18.

    CrossRef Google Scholar

    Shervais JW. 2001. Birth, death, and resurrection: the life cycle of suprasubduction zone ophiolites. Geochemistry, Geophysics, Geosystems, 2(1), 148–159. doi: 10.1029/2000GC000080.

    Google Scholar

    Smith SE, Elthon D. 1988. Mineral compositions of plutonic rocks from the Lewis Hills massif, Bay of Islands ophiolite. Journal of Geophysical research, 93, 3450–3468. doi: 10.1029/JB093iB04p03450.

    CrossRef Google Scholar

    Sun M, Jain J, Zhou M, Kerrich R. 1993. A procedural modification for enhanced recovery of precious metals (Au, PGE) following nickel sulphide fire assay and tellurium co-precipitation: applications for analysis of geological samples by inductively coupled plasma mass spectrometry. Canadian journal of applied spectroscopy, 38, 103–108.

    Google Scholar

    Sun Y, Sun M. 2005. Nickel sulfide fire assay improved for pre-concentration of platinum-group elements in geological samples: a practical means of ultra-trace analysis combined with inductively coupled plasma-mass spectrometry. Analyst, 130, 664–669. doi: 10.1039/b416844e.

    CrossRef Google Scholar

    Ulven IO, Hovelmann J, Austrheim H, Jamtveit B, Beinlich A. 2017. Subarctic physiochemical weathering of serpentinized peridotite. Earth and Planetary Science Letters, 486, 11–26. doi: 10.1016/j.jpgl.2017.03.030.

    CrossRef Google Scholar

    Uysal I, Akmaz RM, Kapsiotis A, Demir Y, Saka S, Avcı E, Müller D. 2015. Genesis and geodynamic significance of chromitites from the Orhaneli and Harmancık ophiolites (Bursa, NW Turkey) as evidenced by mineralogical and compositional data. Ore Geology Reviews, 65, 26–41. doi: 10.1016/j.oregeorev.2014.08.006.

    CrossRef Google Scholar

    Uysal I, Sadiklar M, Tarkian M, Karsli O, Aydin F. 2005. Mineralogy and composition of the chromitites and their platinum-group minerals from Ortaca (Muğla-SW Turkey): evidence for ophiolitic chromitite genesis. Mineralogy and Petrology, 83, 219–242. doi: 10.1007/s00710-004-0063-3.

    CrossRef Google Scholar

    Uysal I, Tarkian M, Sadiklar MB, Zaccarini F, Meisel T, Garuti G, Heidrich S. 2009. Petrology of Al- and Cr-rich ophiolitic chromitites from the Mugla, SW Turkey: implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-Isotope geochemistry. Contributions to Mineralogy and Petrology, 158, 659–674. doi: 10.1007/s00410-009-0402-9.

    CrossRef Google Scholar

    Uysal IM, Kaliwoda M, Karsli O, Tarkian M, Sadiklar MB, Ottley CJ. 2007. Compositional variations as a result of partial melting and melt–peridotite interaction in an upper mantle section from the Ortaca area, southwestern Turkey. The Canadian Mineralogist, 45, 1471–1493. doi: 10.3749/canmin.45.6.1471.

    CrossRef Google Scholar

    Wan Z, Laurence A, Coogan LA, Canil D. 2008. Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. American Mineralogist, 93, 1142–1147. doi: 10.2138/am.2008.2758.

    CrossRef Google Scholar

    Wilson M. 1989. Igneous Petrogenesis. Unwin Hyman, London. pp 446.

    Google Scholar

    Xiong FH, Basem Z, Xu XZ, Davide L, Yang JS. 2022. Genesis and high-pressure evolution of the Koycegiz ophiolite (SW Turkey): mineralogical and geochemical characteristics of podiform chromitites. Ore Geology Reviews, 145, 104912. doi: 10.1016/j.oregeorev.2022.104912.

    CrossRef Google Scholar

    Xiong FH, Yang JS, Robinson PT, Xu XZ, Liu Z, Li Y, Li JY, Chen SY. 2015. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27(2), 525–542. doi: 10.1016/j.gr.2014.04.008.

    CrossRef Google Scholar

    Yamamoto S, Komiya T, Hirose K, Maruyama S. 2009. Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos, 109, 314–322. doi: 10.1016/j.lithos.2008.05.003.

    CrossRef Google Scholar

    Yang JS, Robinson PT, Dilek Y. 2014. Diamonds in ophiolites. Elements, 10, 127–130. doi: 10.2113/gselements.10.2.127.

    CrossRef Google Scholar

    Yang JS, Robinson PT, Xu X, Dilek Y. 2013. Ophiolite-type diamond: a new occurrence of diamond on the Earth. EGU General Assembly Conference Abstracts, 13613.

    Google Scholar

    Zhou MF, Robinson PT, Bai WJ. 1994. Formation of podiform chromitites by melt/rock interaction in the upper mantle. Mineralium Deposita 29(1), 98–101. doi: 10.1007/BF03326400.

    Google Scholar

    Zhou MF, Robinson PT, Malpas J, Li ZJ. 1996. Podiform chromitites in the Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37, 3–21. doi: 10.1093/petrology/37.1.3.

    CrossRef Google Scholar

    Zhou MF, Robinson PT, Malpas J, Edwards SJ, Qi L. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. Journal of Petrology, 46, 615–639. doi: 10.1093/petrology/egh091.

    CrossRef Google Scholar

    Zhou MF, Robinson PT, Su BX, Gao JF, Li JW, Yang JS, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: the role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research, 26(1), 262–283. doi: 10.1016/j.gr.2013.12.011.

    CrossRef Google Scholar

    Zhou MF, Sun M, Keays RR, Kerrich RW. 1998. Controls on platinum-group elemental distributions of podiform chromitites: a case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62, 677–688. doi: 10.1016/S0016-7037(97)00382-7.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(6)

Article Metrics

Article views(151) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint