Citation: | Alok Kumar, Khairul Azlan Mustapha, Alok K. Singh, Mohammed Hail Hakimi, Ali Y. Kahal, Waqas Naseem, Hijaz Kamal Hasnan, 2025. Evaluating the hydrocarbon generation potential of the Paleocene–Eocene carbonaceous rocks in the Barmer and Bikaner-Nagaur Basins, western Rajasthan, India, China Geology, 8, 77-91. doi: 10.31035/cg20230121 |
The Bikaner-Nagaur and Barmer Basins (Rajasthan) are the most important petroliferous sedimentary basins in India. For over a decade, the exploration and extraction of hydrocarbons in these basins. Paleocene-Eocene age rocks bear organic-rich sediments in these basins, including lignite and carbonaceous shale deposits. The present research investigates the source rock properties, petroleum potential and thermal maturity of the carbonaceous shale partings from the lignite mines of Gurha (Bikaner-Nagaur Basin) and Kapurdi (Barmer Basin) using petrographical and geochemical tools. The carbonaceous shales have high organic matter (OM), with considerable total organic carbon (TOC) contents ranging from 13% to 39%. Furthermore, they contain hydrogen-rich kerogen, including types II and II/III, as evidenced by the Rock-Eval and elemental analysis results. The existence of these kerogen types indicates the abundance of reactive (vitrinite and liptinite) macerals. However, the carbonaceous shales from the Bikaner–Nagaur Basin have oil generation potentials, with a high hydrogen index (up to 516 mg HC/g TOC) and a H/C ratio (up to 1.5) along with a significant presence of oil-prone liptinitic macerals. Apart from the geochemical and petrological results, the studied shales have low huminite reflectance (0.31%–0.48%), maximum temperature (S2 peak; Tmax) between 419°C and 429°C, and low production index values (PI: 0.01–0.03). These results indicate that these carbonaceous shales contain immature OM, and thereby, they cannot yet release commercial amount of oil. This immaturity level in the studied outcrop section is due to the shallow burial depth. Geochemical proxies further indicate the presence of both oil and gas-prone source rocks.
ASTM D3176-15 2002. Standard Practice for Ultimate Analysis of Coal and Coke. In Annual Book of ASTM Standards. American Society for Testing and Materials West Conshohocken, PA, 1–3. |
ASTM D5373 2008. Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal, 1–11. |
Bhowmick PK. 2008. Phanerozoic petroliferous basins of India. Glimpses of Geoscience research in India, 253–268. |
Bordenave ML, Espitalié J, Leplat PO, Oudin JL, Vandenbroucke M. 1993. Screening techniques for source rock evaluation. Applied Petroleum Geochemistry, 217–278. |
Chetia R, Mathews RP, Singh PK, Sharma A. 2022. Conifer-mixed tropical rainforest in the Indian Paleogene: New evidences from terpenoid signatures. Palaeogeography, Palaeoclimatology, Palaeoecology, 596, 110980. doi:10.1016/j.palaeo.2022.110980 |
Espitalié J, Laporte JL, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A. 1977. Rapid Method for Characterizing the Source Rocks, Their Petroleum Potential and Their Degree of Evolution. Revue de l'Institut Francais du Petrole, 32, 23–42. doi: 10.2516/ogst:1977002. |
Espitalié J. 1986. Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance. In: Burrus, J. (Ed.), Thermal Modelling in Sedimentary Basins. Editions Technip, Paris, 475–496. |
Goodarzi F, Gentzis T, Yiakkoupis P. 1990. Petrographic characteristics and depositional environment of Greek lignites I: Drama Basin, northern Greece. Journal of Coal Quality, 9(1), 26–37. |
Hakimi MH, Abdullah WH, Sia SG, Makeen YM. 2013. Organic geochemical and petrographic characteristics of Tertiary coals in the northwest Sarawak, Malaysia: implications for palaeoenvironmental conditions and hydrocarbon generation potential. Marine and Petroleum Geology, 48, 31–46. doi: 10.1016/j.marpetgeo.2013.07.009. |
Hakimi MH, Kumar A, Singh AK, Lashin A, Rahim A, Varfolomeev MA, Yelwa NA, Mustapha KA. 2022. Geochemistry and organic petrology of the bituminite shales from the Kapurdi mine, Rajasthan of NW India: implications for waxy oil generation potential. Journal of Petroleum Exploration and Production Technology, 1–17. doi:10.1007/s13202-022-01597-9 |
Hazra B, Katz BJ, Singh DP, Singh PK. 2022. Impact of siderite on Rock-Eval S3 and oxygen index. Marine and Petroleum Geology, 143, 105804. doi: 10.1016/j.marpetgeo.2022.105804. |
Hunt JM. 1995. Petroleum geochemistry and geology (textbook). Petroleum Geochemistry and Geology (Textbook). (2 nd Ed.), WH Freeman Company. |
International Committee for Coal Petrology (ICCP) 2001. The new inertinite classification (ICCP System 1994). Fuel, 80, 459–471. doi:10.1016/S0016-2361(00)00102-2 |
ISO 7404-2. 2009. Methods for the Petrographic Analysis of Bituminous Coal and Anthracite–Part 2: Method of preparing coal samples. International Organization for Standardization, ISO, Geneva. |
Kar NR, Mani D, Mukherjee S, Dasgupta S, Puniya MK, Kaushik AK, Biswas M, Babu EVSSK. 2022. Source rock properties and kerogen decomposition kinetics of Eocene shales from petroliferous Barmer basin, western Rajasthan, India. Journal of Natural Gas Science and Engineering, 100, 104497. doi: 10.1016/j.jngse.2022.104497. |
Katz BJ, Lin F. 2014. Lacustrine basin unconventional resource plays: Key differences. Marine and Petroleum Geology, 56, 255–265. doi: 10.1016/j.marpetgeo.2014.02.013. |
Katz BJ, Lin F. 2021. Consideration of the limitations of thermal maturity with respect to vitrinite reflectance, Tmax, and other proxies. AAPG Bulletin, 105(4), 695–720. doi: 10.1306/09242019261. |
Kumar A, Singh AK, Paul D, Kumar A. 2020. Evaluation of hydrocarbon potential with insight into climate and environment present during deposition of the Sonari lignite, Barmer Basin Rajasthan. Energy and Climate Change, 1, 100006. doi: 10.1016/j.egycc.2020.100006. |
Kumar A. 2022. Tertiary Coal and Lignite Deposits of India and their Source Rock Potential: A Review on the Contribution of the Indian Coal Petrologists. Journal of the Geological Society of India, 98(12), 1745–1753. doi: 10.1007/s12594-022-2246-0. |
Kumar A, Singh AK, Paul D, Kumar A. 2021. Paleoenvironmental, paleovegetational, and paleoclimatic changes during Paleogene lignite formation in Rajasthan, India. Arabian Journal of Geosciences, 14, 2350. doi: 10.1007/s12517-021-08638-3. |
Kumar A, Hakimi MH, Singh AK, Abdullah WH, Zainal Abidin NS, Rahim A, Mustapha KA, Yelwa NA. 2022. Geochemical and Petrological Characterization of the Early Eocene Carbonaceous Shales: Implications for Oil and Gas Exploration in the Barmer Basin, Northwest India. ACS omega, 7(47), 42960–42974. doi: 10.1021/acsomega.2c05148. |
Kumar OP, Gopinathan P, Naik AS, Subramani T, Singh PK, Sharma A, Maity S, Saha S. 2023. Characterization of lignite deposits of Barmer Basin, Rajasthan: insights from mineralogical and elemental analysis. Environmental Geochemistry and Health, 45, 6471–6493. doi: 10.1007/s10653-023-01649-x. |
Kumar OP, Naik AS, Gopinathan P, Subramani T, Singh V, Singh PK, Shukla UK, Prabhu A. 2024. Petrographic and geochemical analysis of Barmer Basin Paleogene lignite deposits: Insights into depositional environment and paleo-climate. Journal of Geochemical Exploration, 256, 107335. doi: 10.1016/j.gexplo.2023.107335. |
Mastalerz M, Drobniak A, Stankiewicz AB. 2018. Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review. International Journal of Coal Geology, 195, 14–36. doi: 10.1016/j.coal.2018.05.013. |
Mathews RP, Singh BD, Singh VP, Singh A, Singh H, Shivanna M, Dutta S, Mendhe VA, Chetia R. 2020a. Organo-petrographic and geochemical characteristics of Gurha lignite deposits, Rajasthan, India: Insights into the palaeovegetation, palaeoenvironment and hydrocarbon source rock potential. Geoscience Frontiers, 11(3), 965–988. doi: 10.1016/j.gsf.2019.10.002. |
Mathews RP, Chetia R, Agrawal S, Singh BD, Singh PK, Singh VP, Singh A. 2020b. Early Palaeogene climate variability based on n-alkane and stable carbon isotopic composition evidenced from the Barsingsar lignite-bearing sequence of Rajasthan. Journal of the Geological Society of India, 95, 255–262. doi: 10.1007/s12594-020-1423-2. |
Mukherjee M, Misra S. 2018. A review of experimental research on Enhanced Coal Bed Methane (ECBM) recovery via CO2 sequestration. Earth-Science Reviews, 179, 392–410. doi: 10.1016/j.earscirev.2018.02.018. |
Mukhopadhyay PK. 1994. Vitrinite reflectance as maturity parameter: petrographic and molecular characterization and its applications to basin modeling. ACS Publications, ACS Symposium Series, 570, 1–24. doi:10.1021/bk-1994-0570.ch001 |
Mukhopadhyay PK, Wade JA, Kruge MA. 1995. Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil-source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada. Organic Geochemistry, 22(1), 85–104. doi: 10.1016/0146-6380(95)90010-1. |
Peters KE. 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG bulletin, 70(3), 318–329. doi: 10.1306/94885688-1704-11D7-8645000102C1865D. |
Peters KE, Cassa MR, Magoon LB, Dow WG. 1994. The petroleum system—From source to trap. American Association of Petroleum Geologists Memoir, 60, 93–120. doi: 10.1306/M60585. |
Pickel W, Kus J, Flores D, Kalaitzidis S, Christanis K, Cardott BJ, Misz-Kennan M, Rodrigues S, Hentschel A, Hamor-Vido M, Wagner N. 2017. Classification of liptinite–ICCP System 1994. International Journal of Coal Geology, 169, 40–61. doi: 10.1016/j.coal.2016.11.004. |
Rajkumari P, Prasad GV. 2020. New chondrichthyan fauna from the Palaeogene deposits of Barmer district, Rajasthan, western India: Age, palaeoenvironment and intercontinental affinities. Geobios, 58, 55–72. doi: 10.1016/j.geobios.2019.11.002. |
Rajak PK, Singh VK, Singh PK, Singh MP, Singh AK. 2019. Environment of paleomire of lignite seams of Bikaner-Nagaur basin, Rajasthan (W. India): petrological implications. International Journal of Oil, Gas and Coal Technology, 22(2), 218–245. doi:10.1504/IJOGCT.2019.102782 |
Rajak PK, Singh VK, Singh AL, Kumar N, Kumar OP, Singh V, Kumar A, Rai A, Rai S, Naik AS, Singh PK. 2020. Study of minerals and selected environmentally sensitive elements in Kapurdi lignites of Barmer Basin, Rajasthan, western India: implications to environment. Geosciences Journal, 24, 441–458. doi: 10.1007/s12303-019-0029-4. |
Rajak PK, Singh VK, Kumar A, Singh V, Rai A, Rai S, Singh KN, Sharma M, Naik AS, Mathur N, Singh PK. 2021. Study of Hydrocarbon Source Potential of Kapurdi Lignites of Barmer Basin, Rajasthan, Western India. Journal of the Geological Society of India, 97, 836–842. doi: 10.1007/s12594-021-1782-3. |
Rana RS, Kumar K, Loyal RS, Sahni A, Rose KD, Mussell J, Singh H, Kulshreshtha SK. 2006. Selachians from the Early Eocene Kapurdi Formation (Fuller’s Earth), Barmer District, Rajasthan. Journal of the Geological Society of India, 67(4), 509–522. |
Roy AB, Jakhar SR. 2002. Geology of Rajasthan (Northwest India) precambrian to recent. Scientific Publishers. |
Schopf JM. 1960. Field description and sampling of coal beds (p. 67). Washington, DC: US Government Printing Office. |
Shukla A, Mehrotra RC. 2014. Paleoequatorial rain forest of western India during the EECO: evidence from Uvaria L. fossil and its geological distribution pattern. Historical Biology, 26(6), 693–698. doi: 10.1080/08912963.2013.837903. |
Shukla A, Mehrotra RC. 2018. Early Eocene plant megafossil assemblage of western India: Paleoclimatic and paleobiogeographic implications. Review of palaeobotany and palynology, 258, 123–132. doi: 10.1016/j.revpalbo.2018.07.006. |
Singh AK, Kumar A. 2017a. Petro-chemical characterization and depositional paleoenvironment of lignite deposits of Nagaur, Western Rajasthan, India. Environmental Earth Sciences, 76, 692. doi: 10.1007/s12665-017-7004-z. |
Singh AK, Kumar A. 2017b. Liquefaction behavior of Eocene lignites of Nagaur Basin, Rajasthan, India: A petrochemical approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(15), 1686–1693. doi:10.1080/15567036.2017.1370514 |
Singh AK, Kumar A. 2018a. Organic geochemical characteristics of Nagaur lignites, Rajasthan, India, and their implication on thermal maturity and paleoenvironment. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(15), 1842–1851. doi:10.1080/15567036.2018.1487480 |
Singh AK, Kumar A. 2018b. Petrographic and geochemical study of Gurha Lignites, Bikaner Basin, Rajasthan, India: Implications for thermal maturity, hydrocarbon generation potential and paleodepositional environment. Journal of the Geological Society of India, 92, 27–35. doi: 10.1007/s12594-018-0949-z. |
Singh AK, Kumar A. 2020. Assessment of thermal maturity, source rock potential and paleodepositional environment of the Paleogene lignites in Barsingsar, Bikaner–Nagaur Basin, Western Rajasthan, India. Natural Resources Research, 29, 1283–1305. doi: 10.1007/s11053-019-09502-8. |
Singh PK, Rajak PK, Singh VK, Singh MP, Naik AS, Raju SV. 2016a. Studies on thermal maturity and hydrocarbon potential of lignites of Bikaner–Nagaur basin, Rajasthan. Energy Exploration & Exploitation, 34(1), 140–157. doi: 10.1177/0144598715623679. |
Singh PK, Rajak PK, Singh MP, Singh VK, Naik AS. 2016b. Geochemistry of kasnau-matasukh lignites, Nagaur basin, Rajasthan (India). International Journal of Coal Science & Technology, 3, 104–122. doi: 10.1007/s40789-016-0135-0. |
Singh PK, Rajak PK, Singh MP, Singh VK, Naik AS, Singh AK. 2016c. Peat swamps at Giral lignite field of Barmer basin, Rajasthan, Western India: understanding the evolution through petrological modelling. International Journal of Coal Science & Technology, 3, 148–164. doi: 10.1007/s40789-016-0137-y. |
Singh AK, Kumar A, Hakimi MH. 2018. Organic geochemical and petrographical characteristics of the Nagaur lignites, Western Rajasthan, India and their relevance to liquid hydrocarbon generation. Arabian Journal of Geosciences, 11, 1–15. doi: 10.1007/s12517-018-3744-7. |
Singh VK, Rajak PK, Singh PK. 2019. Revisiting the paleomires of western India: An insight into the early Paleogene lignite Corridor. Journal of Asian Earth Sciences, 171, 363–375. doi: 10.1016/j.jseaes.2018.08.031. |
Singh VP, Singh BD, Mathews RP, Singh A, Mendhe VA, Mishra S, Banerjee M. 2022. Paleodepositional and Hydrocarbon Source-Rock Characteristics of the Sonari Succession (Paleocene), Barmer Basin, NW India: Implications from Petrography and Geochemistry. Natural Resources Research, 31(5), 2943–2971. doi: 10.1007/s11053-022-10079-y. |
Shukla A, Jasper A, Uhl D, Mathews RP, Singh VP, Chandra K, Chetia R, Shukla S, Mehrotra RC. 2023. Paleo-wildfire signatures revealing co-occurrence of angiosperm-gymnosperm in the early Paleogene: Evidences from woody charcoal and biomarker analysis from the Gurha lignite mine, Rajasthan, India. International Journal of Coal Geology, 265, 104164. doi: 10.1016/j.coal.2022.104164. |
Sun T, Wang C, Duan Y, Li Y, Hu B. 2014. The organic geochemistry of the Eocene–Oligocene black shales from the Lunpola Basin, central Tibet. Journal of Asian Earth Sciences, 79, 468–476. doi: 10.1016/j.jseaes.2013.09.034. |
Sýkorová I, Pickel W, Christanis K, Wolf M, Taylor GH, Flores D. 2005. Classification of huminite—ICCP System 1994. International Journal of Coal Geology, 62(1-2), 85–106. doi: 10.1016/j.coal.2004.06.006. |
Tissot P, Welte DH. 1984. Petroleum formation and occurrence. Springer-verlag. |
Zheng G, Duan Y, Takano B, Luo B, Cheng K, Zhang Y. 2003. Pyrolysis studies on the conversion of vitrinite reflectance and the primary productivity of various non-marine source rocks in China. Journal of Asian Earth Sciences, 22(4), 353–361. doi: 10.1016/S1367-9120(03)00061-0. |
a–Geological map of Rajasthan showing Bikaner-Nagaur and Barmer Basin (after Kumar A et al., 2022) with shale sampling location; sampling outcrop from b–Gurha mine and c–Kapurdi mines.
a–Generalized stratigraphic and lithological succession of Bikaner-Nagaur Basin and, b–Barmer Basin, Rajasthan (after Kumar A et al., 2020).
Representative microphotographs of macerals and mineral matter observed in in Gurha shales from Bikaner-Nagaur Basin, Rajasthan. Ht/Bt–humodetrinite/solid bitumen; Cp–corpohuminite; Aom–amorphous organic matter; Ag–alginite; Sp–sporinite; R–resinite; Ld–liptodetrinite Fg–funginite; It-inertodetrinite Py–framboidal pyrite; C–clay; Cb–carbonate; Q–quartz.
Representative microphotographs of macerals and mineral matter observed in Kapurdi shales from Barmer Basin, Rajasthan.
Correlation of TOC with a–remaining hydrocarbon potential (S2) and b–free hydrocarbon (S1).
Relationship between total organic carbon (TOC) content with petroleum generation (GP; S1+S2) of Rajasthan lignite (Peters KE et al., 1994).
Classification of kerogen type and assessment of the maturity based on Rock Eval-pyrolysis plots A–hydrogen index (HI) versus oxygen index (OI) (afterPeters KE, 1986); B–HI versus Tmax (afterMukhopadhyay PK et al., 1995).
Relationship between atomic ratios H/C and O/C for the shale samples of Bikaner-Nagaur and Barmer Basin, Rajasthan.
Main stage of evolution (maturation) of the organic matter in the analyzed samples from Bikaner-Nagaur and Barmer Basin, showing maturity level, the plot of Tmax with a–huminite reflectance, b–production index.
Relationship between a–TOC content and S2/S3 yield; b–TOC content and HI (Peters KE et al., 1994).