2023 Vol. 6, No. 3
Article Contents

Zhen Wang, Hua-ming Guo, Hai-yan Liu, Wei-min Zhang, 2023. Source, migration, distribution, toxicological effects and remediation technologies of arsenic in groundwater in China, China Geology, 6, 476-493. doi: 10.31035/cg2022086
Citation: Zhen Wang, Hua-ming Guo, Hai-yan Liu, Wei-min Zhang, 2023. Source, migration, distribution, toxicological effects and remediation technologies of arsenic in groundwater in China, China Geology, 6, 476-493. doi: 10.31035/cg2022086

Source, migration, distribution, toxicological effects and remediation technologies of arsenic in groundwater in China

More Information
  • Groundwater with high arsenic (As) content seriously threatens human life and health. Drinking high-As groundwater for a long time will lead to various pathological changes such as skin cancer, liver cancer, and kidney cancer. High-As groundwater has become one of the most serious environmental geological problems in China and even internationally. This paper aims to systematically summarize the sources, migration, distribution, toxicological effects, and treatment techniques of As in natural groundwater in China based on a large number of literature surveys. High-As groundwater in China is mainly distributed in the inland basins in arid and semi-arid environments and the alluvial and lacustrine aquifers in river deltas in humid environments, which are in neutral to weakly alkaline and strongly reducing environments. The content of As in groundwater varies widely, and As(III) is the main form. The main mechanism of the formation of high-As groundwater in China is the reduced dissolution of Fe and Mn oxides under the action of organic matter and primary microorganisms, alkaline environment, intense evaporation and concentration, long-term water-rock interaction, and slow groundwater velocity, which promote the continuous migration and enrichment of As in groundwater. There are obvious differences in the toxicity of different forms of As. The toxic of As(III) is far more than As(V), which is considered to be more toxic than methyl arsenate (MMA) and dimethyl arsenate (DMA). Inorganic As entering the body is metabolized through a combination of methylation (detoxification) and reduction (activation) and catalyzed by a series of methyltransferases and reductases. At present, remediation methods for high-As groundwater mainly include ion exchange technology, membrane filtration technology, biological treatment technology, nanocomposite adsorption technology, electrochemical technology, and so on. All the above remediation methods still have certain limitations, and it is urgent to develop treatment materials and technical means with stronger As removal performance and sustainability. With the joint efforts of scientists and governments of various countries in the future, this worldwide problem of drinking-water As poisoning will be solved as soon as possible. This paper systematically summarizes and discusses the hot research results of natural high-As groundwater, which could provide a reference for the related research of high-As groundwater in China and even the world.

  • 加载中
  • Ahmed S, Akhtar E, Roy A, Von Ehrenstein OS, Vahter M, Wagatsuma Y, Raqib R. 2017. Arsenic exposure alters lung function and airway inflammation in children: A cohort study in rural Bangladesh. Environment International, 101, 108–116. doi: 10.1016/j.envint.2017.01.014.

    CrossRef Google Scholar

    Alexander LF, Justin HD, Samantha CY, Roya B. 2017. The Effect of a Receding Saline Lake (The Salton Sea) on Airborne Particulate Matter Composition. Environmental Science & Technology, 51(15), 8283–8292. doi: 10.1021/acs.est.7b01773.

    CrossRef Google Scholar

    Alsulaili A, Al-Harbi M, Elsayed K. 2020. The influence of household filter types on quality of drinking water. Process Safety and Environmental Protection, 143, 204–211. doi: 10.1016/j.psep.2020.06.051.

    CrossRef Google Scholar

    An Y, Li CC, Deng YH. 2015. Current conditions of researches in arsenic-induced oxidative stress. Foreign Medical Sciences (Section of Medgeography), 36(3), 165–173 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-8883.2015.03.001.

    CrossRef Google Scholar

    Anawar HM, Akai J, Sakugawa H. 2004. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere, 54(6), 753–762. doi: 10.1016/j.chemosphere.2003.08.030.

    CrossRef Google Scholar

    Asere TG, Stevens CV, Laing GD. 2019. Use of (modified) natural adsorbents for arsenic remediation: A review. Science of the Total Environment, 676, 706–720. doi: 10.1016/j.scitotenv.2019.04.237.

    CrossRef Google Scholar

    Ashraf S, Siddiqa A, Shahida S, Qaisar S. 2019. Titanium-based nanocomposite materials for arsenic removal from water: A review. Heliyon, 5(5), 1577–1584. doi: 10.1016/j.heliyon.2019.e01577.

    CrossRef Google Scholar

    Besold J, Kumar N, Scheinost AC, Pacheco JL, Fendorf S. 2019. Antimonite Complexation with Thiol and Carboxyl/Phenol Groups of Peat Organic Matter. Environmental Science and Technology, 53(9), 5005–5015. doi: 10.1021/acs.est.9b00495.

    CrossRef Google Scholar

    Bhattacharjee P, Banerjee M, Giri AK. 2013. Role of genomic instability in arsenic induced carcinogenicity: A review. Environment International, 53, 29–40. doi: 10.1016/j.envint.2012.12.004.

    CrossRef Google Scholar

    Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G. 2007. Arsenic in the environment: Biology and Chemistry. Science of the Total Environmental, 379, 109–120. doi: 10.1016/j.scitotenv.2007.02.037.

    CrossRef Google Scholar

    Bhowmick S, Pramanik S, Singh P, Mondal P, Nriagu J. 2017. Arsenic in groundwater of West Bengal, India: A review of human health risks and assessment of possible intervention options. Science of the Total Environment, 612, 148–169. doi: 10.1016/j.scitotenv.2017.08.216.

    CrossRef Google Scholar

    Birkle P, Bundschuh J, Sracek O. 2010. Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico. Water Research, 44(19), 5605–5617. doi: 10.1016/j.watres.2010.05.046.

    CrossRef Google Scholar

    Brauner EV, Nordsborg RB, Andersen ZJ, Tjønneland A, Loft S, Raaschou-Nielsen O. 2014. Long-term exposure to low-level arsenic in drinking water and diabetes incidence: A prospective study of the Diet, Cancer and Health Cohort. Environmental Health Perspectives, 122(10), 1059–1065. doi: 10.1289/ehp.1408198.

    CrossRef Google Scholar

    Cai LM, Xu ZC, Bao P, He M, Dou L, Chen LG, Zhou YZ, Zhu YG. 2015. Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148, 189–195. doi: 10.1016/j.gexplo.2014.09.010.

    CrossRef Google Scholar

    Cao WG, Wang YY, Ren Y, Fei YH, Li JC, Li ZY, Zhang D, Shuai GY. 2022. Status and progress of treatment technologies for arsenic-containing groundwater. Geology in China, 49(05), 1408–1426 (in Chinese with English abstract).

    Google Scholar

    Chen ASC, Wang L, Sorg TJ, Lytle DA. 2020. Removing arsenic and co-occurring contaminants from drinking water by full-scale ion exchange and point-of-use/point-of-entry reverse osmosis systems. Water Research, 172, 115455. doi: 10.1016/j.watres.2019.115455.

    CrossRef Google Scholar

    Choong TSY, Chuah TG, Robiah Y, Gregory-Koay FL, Azni I. 2007. Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination, 217 (1–3), 139–166. doi: 10.1016/j.desal.2007.01.015.

    Google Scholar

    Cohen SM, Arnold LL, Eldan M, Lewis AS, Beck BD. 2006. Methylated arsenicals: The implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Critical Reviews in Toxicology, 36, 99–133. doi: 10.1080/10408440500534230.

    CrossRef Google Scholar

    Dai SF, Ren D, Tang Y, Yue M, Hao LM. 2005. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 61(1), 119–137.doi. doi: 10.1016/j.coal.2004.07.003.

    CrossRef Google Scholar

    Dai XY, Li P, Tu J, Zhang R, Wei DZ, Li B, Wang YH, Jiang Z. 2018. Evidence of arsenic mobilization mediated by an indigenous iron reducing bacterium from high arsenic groundwater aquifer in Hetao Basin of Inner Mongolia, China. International Biodeterioration and Biodegradation, 128, 22–27. doi: 10.1016/j.ibiod.2016.05.012.

    CrossRef Google Scholar

    Das N, Giri A, Chakraborty S, Bhattacharjee P. 2016. Association of single nucleotide polymorphism with arsenic-induced skin lesions and genetic damage in exposed population of West Bengal, India. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 809, 50–56. doi: 10.1111/j.1398-9995.2011.02548.x.

    CrossRef Google Scholar

    Deng YM, Wang YX, Ma T, Yang H, He J. 2011. Arsenic associations in sediments from shallow aquifers of northwestern Hetao Basin, Inner Mongolia. Environmental Earth Sciences, 64(8), 2001–2011. doi: 10.1007/s12665-011-1020-1.

    CrossRef Google Scholar

    Dixit S, Hering JG. 2003. Comparison of arsenic(V) and arsenic(III) sorption onto Fe oxide minerals, implications for arsenic mobility. Environmental Science and Technology, 37(18), 4182–4189. doi: 10.1021/es030309t.

    CrossRef Google Scholar

    Dong YH, Ma T, Li JL, Liu Y. 2018. Arsenic releasing from poly-metallic sulfide deposits at Hetao Plain, China. Geochemistry International, 56(12), 1179–1188. doi: 10.1134/S001670291812011X.

    CrossRef Google Scholar

    Duan YH, Gan YQ, Wang YX, Liu CX, Yu K, Deng YM, Zhao K, Dong CJ. 2017. Arsenic speciation in aquifer sediment under varying groundwater regime and redox conditions at Jianghan Plain of Central China. Science of the Total Environment, 608, 992–1000. doi: 10.1016/j.scitotenv.2017.07.011.

    CrossRef Google Scholar

    Edmunds WM, Ahmed KM, Whitehead PG. 2015. A review of arsenic and its impacts in groundwater of the Ganges-Brahmaputra-Meghna delta, Bangladesh. Environmental Science:Processes and Impacts, 17(6), 1032–1046. doi: 10.1039/c4em00673a.

    CrossRef Google Scholar

    Evans HA, Wu Y, Seshadri R, Cheetham AK. 2020. Perovskite-related ReO3-type structures. Nature Reviews Materials, 5, 196–213. doi: 10.1038/s41578-019-0160-x.

    CrossRef Google Scholar

    Ferrario D, Collotta A, Carfi M, Bowe G, Vahter M, Hartung T, Gribaldo L. 2009. Arsenic induces telomerase expression and maintains telomere length in human cord blood cells. Toxicology, 260(1–3), 132–141. doi: 10.1016/j.tox.2009.03.019.

    Google Scholar

    Figoli A, Fuoco I, Apollaro C, Chabane M, Mancuso R, Gabriele B, De Rosa R, Vespasiano G, Barca D, Criscuoli A. 2020. Arsenic-contaminated groundwaters remediation by nanofiltration. Separation and Purification Technology, 238, 1–10. doi: 10.1016/j.seppur.2019.116461.

    CrossRef Google Scholar

    Ding ZH, Zheng BS, Long JP, Belkin HE, Finkelman RB, Chen CG, Zhou DX, Zhou YS. 2001. Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China. Applied Geochemistry, 16, 1353–1360. doi: 10.1016/S0883-2927(01)00049-X.

    CrossRef Google Scholar

    Gao CR, Liu WB, Liu B, Li JF, Li F. 2010. Modes of occurrence of arsenic in Quaternary sediments of the Hetao Plain. Geology in China, 37(3), 760–770 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2010.03.032.

    CrossRef Google Scholar

    Gao ZP, Jia YF, Guo HM, Zhang D, Zhao B. 2020. Quantifying geochemical processes of arsenic mobility in groundwater from an inland basin using a reactive transport model. Water Resources Research, 56(2), 1–15. doi: 10.1029/2019WR025492.

    CrossRef Google Scholar

    Gao ZP, Weng HC, Guo HM. 2021. Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the hetao basin using geochemical and multi-isotopic approaches. Journal of Hydrology, 595(47), 125981. doi: 10.1016/j.jhydrol.2021.125981.

    CrossRef Google Scholar

    Goswami R, Kumar M, Biyani N, Shea PJ. 2020. Arsenic exposure and perception of health risk due to groundwater contamination in Majuli (River Island), Assam, India. Environmental Geochemistry and Health, 42(2), 443–460. doi: 10.1007/s10653-019-00373-9.

    CrossRef Google Scholar

    Guo HM, Guo Q, Jia YF, Liu ZY, Jiang YX. 2013. Chemical characteristics and geochemical processes of high arsenic groundwater in different regions of China. Journal of Earth Sciences and Environment, 35(3), 83–96 (in Chinese with English abstract).

    Google Scholar

    Guo HM, Li XM, Xiu W, He W, Cao YS, Zhang D, Wang A. 2019. Controls of organic matter bioreactivity on arsenic mobility in shallow aquifers of the Hetao Basin, P. R. China. Journal of Hydrology, 571, 448–459. doi: 10.1016/j.jhydrol.2019.01.076.

    CrossRef Google Scholar

    Guo HM, Jia YF, Wanty RB, Jiang YX, Zhao WG, Xiu W, Shen JX, Li Y, Cao YS, Wu Y, Zhang D, Wei C, Zhang YL, Cao WG, Fosterf A. 2015. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls. Science of the Total Environment, 541, 1172–1190. doi: 10.1016/j.scitotenv.2015.10.018.

    CrossRef Google Scholar

    Guo HM, Tang XH, Yang SZ. 2008. Effect of indigenous bacteria on geochemical behavior of arsenic in aquifer sediments from the Hetao basin, Inner Mongolia: Evidence from sediment incubation. Applied Geochemistry, 23, 3267–3277. doi: 10.1016/J.APGEOCHEM.2008.07.010.

    CrossRef Google Scholar

    Guo HM, Wen DG, Liu ZY, Jia YF, Guo Q. 2014. A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes. Applied Geochemistry, 41(1), 196–217. doi: 10.1016/j.apgeochem.2013.12.016.

    CrossRef Google Scholar

    Guo HM, Zhang B, Yang SZ, Stüben D, Norra S, Wang JJ. 2009. Role of colloidal particles for hydrogeochemistry in As-affected aquifers of the Hetao Basin, Inner Mongolia. Geochemical Journal, 2009,43(4), 227–234. doi: 10.2343/geochemj.1.0020.

    CrossRef Google Scholar

    Guo HM, Zhang Y, Xing LN, Jia YF. 2012. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the Shahai town of the Hetao basin, Inner Mongolia. Applied Geochemistry, 27(11), 2187–2196. doi: 10.1016/J.APGEOCHEM.2012.01.016.

    CrossRef Google Scholar

    Guo Q, Wang Y, Liu W. 2007. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China. Journal of Volcanology and Geothermal Research, 166(3–4), 255–268. doi: 10.1016/j.jvolgeores.2007.08.004.

    Google Scholar

    Guo QH, Cao YW, Li JX, hang XB, Wang YX. 2015. Natural attenuation of geothermal arsenic from Yangbajain power plant discharge in the Zangbo River, Tibet, China. Applied Geochemistry, 62, 164–170. doi: 10.1016/J.APGEOCHEM.2015.01.017.

    CrossRef Google Scholar

    Han Y, Zhang HM, Zhang YF, Zhang X. 2017. Distribution regularity, origin and quality division of high arsenic, fluorine and iodine contents in groundwater in Datong Basin. Geological Survey of China, 4(1), 57–68 (in Chinese with English abstract). doi: 10.19388/j.zgdzdc.2017.01.09.

    CrossRef Google Scholar

    Harvey CF, Ashfaque KN, Yu W, Badruzzaman ABM, Ali MA, Oates PM, Michael HA, Neumann RB, Beckie R, Islam S. 2006. Groundwater dynamics and arsenic contamination in Bangladesh. Chemical Geology, 228(1–3), 112–136. doi: 10.1016/j.chemgeo.2005.11.025.

    Google Scholar

    Hayakawa T, Kobayashi Y, Cui X, Hirano S. 2005. A new metabolic pathway of arsenite: Arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt 19. Archives of Toxicology, 79, 183–191. doi: 10.1007/s00204-004-0620-x.

    CrossRef Google Scholar

    Hayati B, Maleki A, Najafi F, Gharibi F, McKay G, Gupta VK, Puttaiah SH, Marzban N. 2018. Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems. Chemical Engineering Journal, 346, 258–270. doi: 10.1016/j.cej.2018.03.172.

    CrossRef Google Scholar

    He B, Liang L, Jiang G. 2002. Distributions of arsenic and selenium in selected Chinese coal mines. Science of the Total Environment, 296, 19–26. doi: 10.1016/S0048-9697(01)01136-6.

    CrossRef Google Scholar

    He XD, Li PY, Wu JH, Wei MJ, Ren XF, Wang D. 2020. Poor groundwater quality and high potential health risks in the Datong Basin, northern China: Research from published data. Environmental Geochemistry and Health, 2020,43(2), 791–812. doi: 10.1007/s10653-020-00520-7.

    CrossRef Google Scholar

    Hong HJ, Yang JS, Kim BK, Yang JW. 2011. Arsenic removal behavior by Fe-Al binary oxide: Thermodynamic and kinetic study. Separation Science and Technology, 46(16), 2531–2538. doi: 10.1080/01496395.2011.598205.

    CrossRef Google Scholar

    Hong YS, Song KH, Chung JY. 2014. Health effects of chronic arsenic exposure. Journal of Preventive Medicine and Public Health, 47(5), 245–252. doi: 10.3961/jpmph.14.035.

    CrossRef Google Scholar

    Ilgen AG, Rychagov SN, Trainor TP. 2011. Arsenic speciation and transport associated with the release of spent geothermal fluids in mutnovsky field (Kamchatka, Russia). Chemical geology, 288(3/4), 115–132. doi: org/10.1016/j.chemgeo.2011.07.010.

    CrossRef Google Scholar

    International Agency for Research on Cancer (IARC). 2004. Some drinking-water disinfectants and contaminants, including arsenic. Monographs on the Evaluation of Carcinogenic Risks to Humans. 84. WHO, Lyon, France, 61–96.

    Google Scholar

    Jia YF, Guo HM, Xi BD, Jiang YH, Zhang Z, Yuan RX, Yi WX, Xue XL. 2017. Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia. Science of the Total Environment, 601–602(1), 691–702. doi: 10.1016/j.scitotenv.2017.05.196.

    Google Scholar

    Jia YF, Xi BD, Jiang YH, Guo HM, Yang Y, Lian XY, Han SB. 2018. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review. Science of the Total Environment, 2018, 643, 967–993. doi: 10.1016/j.scitotenv.2018.06.201.

    CrossRef Google Scholar

    Jian M, Liu B, Zhang G, Liu R, Zhang X. 2015. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloid Surface A, 465, 67–76. doi: 10.1016/j.colsurfa.2014.10.023.

    CrossRef Google Scholar

    Jiang J, Kappler A. 2008. Kinetics of microbial and chemical reduction of humic substances: Implications for electron shuttling. Environmental Science and Technology, 42(10), 3563–3569. doi: 10.1021/es7023803.

    CrossRef Google Scholar

    Kan R, Zhong R, Liu J, Wu ZG, Peng CY, Chen H, Fu XM. 2022. Research progress in nephrotoxicity and prevention of arsenic trioxide. Chinese Pharmacological Bulletin, 2, 177–180 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1978.2022.02.005.

    CrossRef Google Scholar

    Kanel SR, Manning B, Charlet L, Choi H. 2005. Removal of Arsenic(III) from groundwater by nanoscale zero-valentiron. Environmental Science and Technology, 39(5), 1291–1298. doi: 10.1021/es048991u.

    CrossRef Google Scholar

    Kanematsu M, Young TM, Fukushi K, Green PG, Darby JL. 2013. Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: Modeling competitive adsorption consistent with spectroscopic and molecular evidence. Geochimica et Cosmochimica Acta, 106(1), 404–428. doi: 10.1016/j.gca.2012.09.055.

    CrossRef Google Scholar

    Kersten M, Vlasova N. 2009. Arsenite adsorption on goethite at elevated temperatures. Applied Geochemistry, 24(1), 32–43. doi: 10.1016/J.APGEOCHEM.2008.10.004.

    CrossRef Google Scholar

    Kim K, Moon JT, Kim SH, Ko KS. 2009. Importance of surface geologic condition in regulating As concentration of groundwater in the alluvial plain. Chemosphere, 77(4), 478–484. doi: 10.1016/j.chemosphere.2009.07.053.

    CrossRef Google Scholar

    Kligerman AD, Tennant AH. 2007. Insights into the carcinogenic mode of action of arsenic. Toxicology and Applied Pharmacology, 222(3), 281–288. doi: 10.1016/j.taap.2006.10.006.

    CrossRef Google Scholar

    Kumar I, Ranjan P, Quaff AR. 2020. Cost-effective synthesis and characterization of CuO NPs as a nanosize adsorbent for As(III) remediation in synthetic arsenic-contaminated water. Journal of Environmental Health Science and Engineering, 18(2), 1131–1140. doi: 10.1007/s40201-020-00532-6.

    CrossRef Google Scholar

    Kumar S, Kumar V, Saini RK, Pant N, Singh R, Singh A, Kumar S, Singh S, Yadav BK, Krishan G, Raj A, Maurya NS, Kumar M. 2021. Floodplains landforms, clay deposition and irrigation return flow govern arsenic occurrence, prevalence and mobilization: A geochemical and isotopic study of the mid-Gangetic floodplains. Environmental Research, 201, 111516. doi: 10.1016/j.envres.2021.111516.

    CrossRef Google Scholar

    Kuo YC, Lo YS, Guo HR. 2017. Lung cancer associated with arsenic ingestion: Cell-type specificity and dose response. Epidemiology, 28(1), 106–112. doi: 10.1097/EDE.0000000000000743.

    CrossRef Google Scholar

    Lang XJ, Lin WJ, Liu ZM, Xing LX, Wang GL. 2016. Hydrochemical characteristics of geothermal water in Guide Basin. Earth Sciences:Journal of China University of Geosciences, 41(10), 1–12 (in Chinese with English abstract). doi: 10.3799/dqkx.2016.509.

    CrossRef Google Scholar

    Langner HW, Jackson CR, Mcdermott TR, Inskeep WP. 2001. Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environmental Science & Technology, 35(16), 3302–3309. doi: 10.1021/es0105562.

    CrossRef Google Scholar

    Lawson M, Polya DA, Boyce AJ, Bryant C, Ballentine CJ. 2016. Tracing organic matter composition and distribution and its role on arsenic release in shallow Cambodian groundwaters. Geochimica et Cosmochimica Acta, 178, 160–177. doi: 10.1016/j.gca.2016.01.010.

    CrossRef Google Scholar

    Li B, Zhao CJ, Li PY, Yuan Y. 2013. BCR speciation analysis of arsenic in contaminated soil in arsenic mining area. Journal of Yunnan University of Nationalities (Natural Sciences Edition), 22(5), 330–333 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-8513.2013.05.006.

    CrossRef Google Scholar

    Li JX, Wang YX, Xie XJ, Zhang LP, Guo W. 2013. Hydrogeochemistry of high iodine groundwater: A case study at the Datong Basin, northern China. Environmental Sciences:Processes and Impacts, 15(4), 848–859. doi: 10.1039/c3em30841c.

    CrossRef Google Scholar

    Liao TQ, Xi YH, Zhang LB, Li J. 2020. Removal of toxic arsenic (As(Ⅲ)) from industrial wastewater by ultrasonic enhanced zero-valent lead combined with CuSO4. Journal of Hazardous Materials, 408(1), 124464. doi: 10.1016/j.jhazmat.2020.124464.

    CrossRef Google Scholar

    Liao Y, Ma T, Chen LZ, Tian CY, Shi JJ. 2013. Hydrochemistry of high-arsenic thermal groundwater of low-temperature in the Guide basin in Qinghai, China. Hydrogeology and Engineering Geology, 40(4), 121–126 (in Chinese with English abstract).

    Google Scholar

    Liu LH, Qiao Q, Tan WF, Sun XC, Liu CS, Dang Z, Qiu GH. 2021. Arsenic detoxification by iron-manganese nodules under electrochemically controlled redox: Mechanism and application. Journal of Hazardous Materials, 403, 123912. doi: 10.1016/j.jhazmat.2020.123912.

    CrossRef Google Scholar

    Liu YC, Zhang ZJ, Zhao XY, Wen MT, Cao SW, Li YS. 2021. Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment. Journal of Groundwater Science and Engineering, 9(4), 304–316. doi: 10.19637/j.cnki.2305-7068.2021.04.004.

    CrossRef Google Scholar

    Maji SK, Pal A, Pal T, Adak A. 2007. Adsorption thermos dynamics of arsenic on laterite soil. Journal of Surface Science and Technology, 22 (3–4), 161–176. doi: 10.18311/JSST/2007/1930.

    Google Scholar

    Martinson CA, Reddy KJ. 2009. Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. Journal of Colloid and Interface Science, 336(2), 406–411. doi: 10.1016/j.jcis.2009.04.075.

    CrossRef Google Scholar

    Massoudinejad M, Ghaderpoori M, Shahsavani A, Jafari A, Kamarehie B, Ghaderpoury A, Amini MM. 2018. Ethylenediamine-functionalized cubic ZIF-8 for arsenic adsorption from aqueous solution: Modeling, isotherms, kinetics and thermodynamics. Journal of Molecular Liquids, 255, 263–268. doi: 10.1016/j.molliq.2018.01.163.

    CrossRef Google Scholar

    Matthijs B, Breukelen BMV, Stuyfzand PJ. 2013. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Research, 47(14), 5088–5100. doi: 10.1016/j.watres.2013.05.049.

    CrossRef Google Scholar

    Mazumder DNG, Chakraborty AK, Ghose A, Gupta JD, Chattopadhyay N. 1988. Chronic arsenic toxicity from drinking tubewell water in rural West Bengal. Bulletin of the World Health Organization, 9(1), 379–401. doi: 10.1146/annurev.pu.09.050188.002115.

    CrossRef Google Scholar

    McArthur JM, Ghosal U, Sikdar PK, Ball JD. 2016. Arsenic in groundwater: The deep late pleistocene aquifers of the western bengal basin. Environmental Science and Technology, 50(7), 3469–3476. doi: 10.1021/acs.est.5b02477.

    CrossRef Google Scholar

    Mochizuki H. 2019. Arsenic neurotoxicity in humans. International Journal of Molecular Sciences, 20(14), 3418–3428. doi: 10.3390/ijms20143418.

    CrossRef Google Scholar

    Mukherjee A, Verma S, Gupta S, Henke KR, Bhattacharya P. 2014. Influence of tectonics, sedimentation and aqueous flow cycles on the origin of global groundwater arsenic: Paradigms from three continents. Journal of Hydrology, 518(1), 284–299. doi: 10.1016/J.JHYDROL.2013.10.044.

    CrossRef Google Scholar

    Naranmandura H, Suzuki N, Suzuki KT. 2006. Trivalent arsenicals are bound to proteins during reductive methylation. Chemical Research in Toxicology, 19, 1010–1018. doi: 10.1021/tx060053f.

    CrossRef Google Scholar

    Narayan VM, Adejoro O, Schwartz I, Ziegelmann M, Elliott S, Konety BR. 2018. The prevalence and impact of urinary marker testing in patients with bladder cancer. Journal of Urology, 199(1), 74–80. doi: 10.1016/j.juro.2017.08.097.

    CrossRef Google Scholar

    Negrea A, Lupa L, Ciopec M, Lazau R, Muntean C, Negrea P. 2010. Adsorption of As(III) ions onto iron-containing waste ludge. Adsorption Science and Technology, 28(6), 467–484. doi: 10.1260/0263-6174.28.6.467.

    CrossRef Google Scholar

    Nicolli HB, García JW, Falcón CM, Smedley PL. 2012. Mobilization of arsenic and other trace element of health concern in groundwater from the Salí River Basin, Tucumán Province, Argentina. Environmental Geochemistry and Health, 34(2), 251–262. doi: 10.1007/s10653-011-9429-8.

    CrossRef Google Scholar

    Nriagu J, Xi C, Siddique A, Vincent A, Shomar B. 2018. Influence of household water filters on bacteria growth and trace metals in tap water of Doha, Qatar. Scientific Reports, 8(1), 1–17. doi: 10.1038/s41598-018-26529-8.

    CrossRef Google Scholar

    Orosun MM. 2021. Assessment of arsenic and its associated health risks due to mining activities in parts of North-central Nigeria: Probabilistic approach using Monte Carlo. Journal of Hazardous Materials, 412(1), 125262. doi: 10.1016/j.jhazmat.2021.12526.

    CrossRef Google Scholar

    Oyarzun R, Lillo J, Higueras P, Oyarzún J, Maturana H. 2004. Strong arsenic enrichment in sediments from the Elqui watershed, Northern Chile: industrial (gold mining at El Indio–Tambo district) vs. geologic processes. Journal of Geochemical Exploration, 84(2), 53–64. doi: 10.1016/j.gexplo.2004.03.002.

    CrossRef Google Scholar

    Park KS, Ni Z, Côté AP, Choi JY, Huang R, UribeRomo FJ, Chae HK, O’Keeffe M, Yaghi OM. 2006. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186–10191. doi: 10.1073/pnas.0602439103.

    CrossRef Google Scholar

    Pascua CS, Minato M, Yokoyama S, Sato T. 2007. Uptake of dissolved arsenic during the retrieval of silica frospent geothermal brine. Geothermics, 36(3), 230–242. doi: 10.1016/j.geothermics.2007.03.001.

    CrossRef Google Scholar

    Pei J, Fan WH, Dong ZM. 2018. The effects of inorganic arsenic on accumulation and detoxification by GSH/GST in tilapia liver. Asian Journal of Ecotoxicology, 13(6), 107–114 (in Chinese with English abstract).

    Google Scholar

    Pi KF, Wang YX, Xie XJ, Ma T, Su CL, Liu YQ. 2017. Role of sulfur redox cycling on arsenic mobilization in aquifers of Datong Basin, northern China. Applied Geochemistry, 77, 31–43. doi: 10.1016/J.APGEOCHEM.2016.05.019.

    CrossRef Google Scholar

    Polizzotto ML, Kocar BD, Benner SG, Sampson M, Fendorf S. 2008. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature, 454(7203), 505–508. doi: 10.1038/nature07093.

    CrossRef Google Scholar

    Polizzotto ML, Lineberger EM, Matteson AR, Neumann RB, Badruzzaman ABM, Alic MA. 2013. Arsenic transport in irrigation water across rice-field soils in Bangladesh. Environmental Pollution, 179, 210–217. doi: 10.1016/j.envpol.2013.04.025.

    CrossRef Google Scholar

    Qiao JT, Li XM, Li FB. 2017. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. Journal of Hazardous Materials, 344(15), 958–967. doi: 10.1016/j.jhazmat.2017.11.025.

    CrossRef Google Scholar

    Qiao W, Guo HM, He C, Shi Q, Xing SP, Gao ZP. 2021. Identification of processes mobilizing organic molecules and arsenic in geothermal confined groundwater from Pliocene aquifers. Water Research, (10), 117140. doi: 10.1016/j.watres.2021.117140.

    CrossRef Google Scholar

    Rahman A, Rahaman H. 2018. Contamination of arsenic, manganese and coliform bacteria in groundwater at Kushtia District, Bangladesh: Human health vulnerabilities Acta Geologica Sinica. Journal of Water and Health, 16(5), 782–795. doi: 10.2166/wh.2018.057.

    CrossRef Google Scholar

    Raml R, Goessler W, Traar P. 2005. Novel thioarsenic metabolites in human urine after ingestion of an arsenosugar, 2', 3'-dihydroxypropyl 5-deoxy-5-dimethylarsinoyl-beta-D-riboside. Chemical Research in Toxicology, 18(9), 1444–1450. doi: 10.1021/tx050111h.

    CrossRef Google Scholar

    Rathi BS, Kumar PS, Ponprasath R, Rohan K, Jahnavi N. 2021. An effective separation of toxic arsenic from aquatic environment using electrochemical ion exchange process. Journal of Hazardous Materials, 412(8), 125240. doi: 10.1016/j.jhazmat.2021.125240.

    CrossRef Google Scholar

    Rivera-Núñez Z, Linder AM, Chen B, Nriagu JO. 2011. Low-level determination of six arsenic species in urine by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS). Analytical Methods, 3(5), 1122–1129. doi: 10.1039/c0ay00601g.

    CrossRef Google Scholar

    Roh T, Steinmaus C, Marshall G, Ferreccio C, Liaw J, Smith AH. 2018. Age at exposure to arsenic in water and mortality 30–40 years after exposure cessation. American Journal of Epidemiology, 187(11), 2297–2305. doi: 10.1093/aje/kwy159.

    CrossRef Google Scholar

    Romero L, Alonso H, Campano P, Fanfani L, Farago M. 2003. Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Applied Geochemistry, 18(9), 1399–1416.

    Google Scholar

    Romero L, Alonso H, Campano P, Fanfani L, Cidu R, Dadea C, Keegan T, Thornton I, Farago M. 2003. Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Applied Geochemistry, 18(9), 1399–1416. doi: 10.1016/S0883-2927(03)00059-3.

    CrossRef Google Scholar

    Rudnick RL, Gao S. 2014. Composition of the continental crust. In: The Crust, Vol. 4, Treatise on Geochemistry. Rudnick RL (Eds.), Holland HD, Turekian KK (Ex. eds.). Elsevier Science Ltd., Amsterdam, 1–51.

    Google Scholar

    Sadler R, Olszowy H, Shaw G, Biltoft R, Connell D. 1994. Soil and water contamination by arsenic from a tannery waste. Water, Air, Soil and Pollution, 78, 189–198. doi: 10.1007/BF00475677.

    Google Scholar

    Sarkar A, Paul B. 2016. The global menace of arsenic and its conventional remediation –A critical review. Chemosphere, 158, 37–49. doi: 10.1016/j.chemosphere.2016.05.043.

    CrossRef Google Scholar

    Saunders JA, Lee MK, Shamsudduha M, Dhakal P, Uddin A, Chowdury MT, Ahmed KM. 2008. Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters. Applied Geochemistry, 23(11), 3205–3214. doi: 10.1016/j.apgeochem.2008.07.002.

    CrossRef Google Scholar

    Scheiber L, Ayora C, Vázquez-Suñé E, Cendón DI, Soler A, Baquero JC. 2016. Origin of high ammonium, arsenic and boron concentrations in the proximity of a mine: Natural vs. anthropogenic processes. Science of the Total Environmental, 541, 655–666. doi: 10.1016/j.scitotenv.2015.09.098.

    CrossRef Google Scholar

    Schmidt SA, Gukelberger E, Hermann M, Fiedler F, Großmann B, Hoinkis J, Ghosh A, Chatterjeec D, Bundschuhd J. 2016. Pilot study on arsenic removal from groundwater using a small-scale reverse osmosis system towards sustainable drinking water production. Journal of Hazardous Materials, 318, 671–678. doi: 10.1016/j.jhazmat.2016.06.005.

    CrossRef Google Scholar

    Scholz C, Wieder T, Stärck L, Essmann F, Schulze-Osthoff K, Daniel PT. 2005. Arsenic trioxide triggers a regulated form of caspase-independent necrotic cell death via the mitochondrial death pathway. Oncogene, 24(11), 1904–1911. doi: 10.1038/sj.onc.1208233.

    CrossRef Google Scholar

    Sharma VK, Sohn M. 2009. Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 35(4), 743–759. doi: 10.1016/j.envint.2009.01.005.

    CrossRef Google Scholar

    Shi WJ, Song WJ, Zheng JL, Luo Y, Qile G, Lü SJ, Lü XM, Zhou B, Lü CW, He J. 2021. Factors and pathways regulating the release and transformation of arsenic mediated by reduction processes of dissimilated iron and sulfate. Science of the Total Environment, 768, 144697. doi: 10.1016/j.scitotenv.2020.144697.

    CrossRef Google Scholar

    Simmons SF. 2000. Hydrothermal Minerals and Precious Metals in the Broadlands-Ohaaki Geothermal System: Implications for Understanding Low-Sulfidation Epithermal Environments. Economic Geology, 95(5), 971–999. doi: 10.2113/95.5.971.

    CrossRef Google Scholar

    Singh R, Singh S, Parihar P, Singh VP, Prasad SM. 2015. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicology and Environmental Safety, 112, 247–270. doi: 10.1016/j.ecoenv.2014.10.009.

    CrossRef Google Scholar

    Sinha D, Prasad P. 2020. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. Journal of Applied Toxicology, 40(1), 87–131. doi: 10.1002/jat.3823.

    CrossRef Google Scholar

    Slotnick MJ, Nriagu JO. 2006. Validity of human nails as a biomarker of arsenic and selenium exposure: A review. Environmental Research, 102, 125–139. doi: 10.1016/j.envres.2005.12.001.

    CrossRef Google Scholar

    Smedley PL, Kinniburgh DG. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. doi: 10.1016/S0883-2927(02)00018-5.

    CrossRef Google Scholar

    Smith AH, Marshall G, Roh T, Ferreccio C, Liaw J, Steinmaus C. 2018. Lung, bladder, and kidney cancer mortality 40 years after arsenic exposure reduction. Journal of the National Cancer Institute, 110(3), 241–249. doi: 10.1093/jnci/djx201.

    CrossRef Google Scholar

    Stuckey JW, Schaefer MV, Kocar BD, Benner SG, Fendorf S. 2016. Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta. Nature Geoscience, 9(1), 70–76. doi: 10.1038/ngeo2589.

    CrossRef Google Scholar

    Souza ACM, De Almeida MG, Pestana IA, De Souza CMM. 2019. Arsenic exposure and effects in humans: A mini-review in Brazil. Archives of Environmental Contamination and Toxicology, 76(3), 357–365. doi: 10.1007/s00244-018-00586-6.

    CrossRef Google Scholar

    Sun Y, Lan JR, Chen XH, Du YG, Ye HP, Du DY, Li J, Hou HB. 2021. Impacts of external organic carbon on arsenic release in aquifer of Jianghan plain, central China. ACS Earth and Space Chemistry, 5, 1343–1354. doi: 10.1021/acsearthspacechem.0c00358.

    CrossRef Google Scholar

    Sun ZX, Zhang W, Hu BQ, Pan TY. 2006. Heat flow and geothermal field in the Qinshui Basin. Chinese Journal of Geophysics, 49(1), 123–128. doi: 10.1002/CJG2.819.

    CrossRef Google Scholar

    Tang XC, Wang GL, Ma Y, Zhang DL, Liu Z, Zhao X, Cheng TJ. 2020. Geological model of heat source and accumulation for geothermal anomalies in the Gonghe basin, northeastern Tibetan Plateau. Acta Geologica Sinica, 94(7), 1–14 (in Chinese with English abstract). doi: 10.19762/j.cnki.dizhixuebao.2020221.

    CrossRef Google Scholar

    Takenaka T, Furuya S. 2008. Geochemical model of the Takigami geothermal system, northeast Kyushu, Japan. Geochemical Journal, 25(4), 267–281. doi: 10.2343/geochemj.25.267.

    CrossRef Google Scholar

    Thomas DJ. 2007. Molecular processes in cellular arsenic metabolism. Toxicology and Applied Pharmacology, 222, 365–373. doi: 10.1016/j.taap.2007.02.007.

    CrossRef Google Scholar

    Wan P, Yuan M, Yu X, Zhang Z, Deng B. 2020. Arsenate removal by reactive mixed matrix PVDF hollow fiber membranes with UIO-66 metal organic frameworks. Chemical Engineering Journal, 382, 122921. doi: 10.1016/j.cej.2019.122921.

    CrossRef Google Scholar

    Wang B, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM. 2008. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 453(7192), 207–211. doi: 10.1038/nature06900.

    CrossRef Google Scholar

    Wang Y, Wang S, Xu P, Liu C, Liu M, Wang Y, Wang C, Zhang C, Ge Y. 2015. Review of arsenic speciation, toxicity and metabolism in microalgae. Reviews in Environmental Science and Biotechnology, 14(3), 427–451. doi: 10.1007/s11157-015-9371-9.

    CrossRef Google Scholar

    Wang YX, Shvartsev SL, Su CL. 2009. Genesis of arsenic/fluoride-enriched soda water: A case study at Datong, northern China. Applied Geochemistry, 24(4), 641–649. doi: 10.1016/j.apgeochem.2008.12.015.

    CrossRef Google Scholar

    Wang Z, Guo HM, Xiu W, Wang J, Shen MM. 2018. High arsenic groundwater in the Guide basin, northwestern China: Distribution and genesis mechanisms. Science of the Total Environment, 640–641, 194–206. doi: 10.1016/j.scitotenv.2018.05.2559.

    Google Scholar

    Williams M. 2001. Arsenic in mine waters: An international study. Environmental Geology, 40, 267–278. doi: 10.1016/j.scitotenv.2020.142062.

    CrossRef Google Scholar

    Xiao XY, Chen TB, Liao XY. 2008. Regional distribution of arsenic contained minerals and arsenic pollution in China. Geographical Research, 27(1), 201–212. doi: 10.3321/j.issn:1000-0585.2008.01.022.

    CrossRef Google Scholar

    Xie XJ, Ellis A, Wang YX, Xie ZM, Duan MY, Su CL. 2009. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Science of the Total Environment, 407, 3823–3835. doi: 10.1016/j.scitotenv.2009.01.041.

    CrossRef Google Scholar

    Xie YX, Miyamato H, Kondo M, Koga H, Zhang A, Ohmichi M, Inaba Y, Chiba M. 2001. Element concentrations in urine of patients suffering from chronic arsenic poisoning. Tohoku Journal of Experimental Medicine, 193, 229–235. doi: 10.1620/tjem.193.229.

    CrossRef Google Scholar

    Xie XJ, Wang YX, Li JX, Yu Q, Wu Y, Su CL, Duan MY. 2015. Effect of irrigation on Fe(III)-SO42- redox cycling and arsenic mobilization in shallow groundwater from the Datong basin, China: Evidence from hydrochemical monitoring and modeling. Journal of Hydrology, 523, 128–138. doi: 10.1016/j.jhydrol.2015.01.035.

    CrossRef Google Scholar

    Xie ZM, Wang J, Wei XF, Li F, Chen MN, Wang J, Gao B. 2018. Interactions between arsenic adsorption/desorption and indigenous bacterial activity in shallow high arsenic aquifer sediments from the Jianghan Plain, central China. Science of the Total Environment, 644, 382–388. doi: 10.1016/j.scitotenv.2018.06.377.

    CrossRef Google Scholar

    Xing SP, Guo HM, Zhang LZ, Wang Z, Sun XM. 2022. Silicate weathering contributed to arsenic enrichment in geotherm-affected groundwater in Pliocene aquifers of the Guide basin, China. Journal of Hydrology, 606, 12744. doi: 10.1016/j.jhydrol.2022.127444.

    CrossRef Google Scholar

    Xu NZ, Gong JS, Tan MJ, Ye YH, Zhou K, Zhu CF, Shu LC, Meng D. 2021. Hydrogeochemical processes and potential exposure risk high-arsenic groundwater in Huaihe River Basin, China. Geology in China, 48(5), 1418–1428 (in Chinese with English abstract). doi: 10.12029/gc20210508.

    CrossRef Google Scholar

    Xue XM, Yan Y, Xiong C, Raber G, Francesconi K, Pan T, Ye J, Zhu YG. 2017. Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120. Environmental Pollution, 228, 111–117. doi: 10.1016/j.envpol.2017.05.005.

    CrossRef Google Scholar

    Yang YJ, Yuan XF, Deng YM, Xie XJ, Wang YX. 2020. Seasonal dynamics of dissolved organic matter in high arsenic shallow groundwater systems. Journal of Hydrology, 589, 125120. doi: 10.1016/j.jhydrol.2020.125120.

    CrossRef Google Scholar

    Ye J, Rensing C, Rosen BP, Zhu YG. 2012. Arsenic biomethylation by photosynthetic organisms. Trends in Plant Science, 17(3), 155–162. doi: 10.1016/j.tplants.2011.12.003.

    CrossRef Google Scholar

    You YJ, Liang YZ, Peng SM, Lan S, Lu GN, Feng XH, Shi ZQ. 2019. Modeling coupled kinetics of arsenic adsorption/desorption and oxidation in ferrihydrite-Mn(II)/manganese (oxyhydr) oxides systems. Chemosphere, 244, 125517. doi: 10.1016/j.chemosphere.2019.125517.

    CrossRef Google Scholar

    Yu Q, Wang YX, Xie XJ, Currell M, Pi KF, Yu M. 2015. Effects of short-term flooding on arsenic transport in groundwater system: A case study of the Datong Basin. Journal of Geochemical Exploration, 158, 1–9. doi: 10.1016/j.gexplo.2015.05.015.

    CrossRef Google Scholar

    Zhang HY, Guan XJ, Mao GY, Zhang Z, Guo XJ. 2016. Progress and trend of metabonomics in arsenic poisoning. Zhejiang Journal of Preventive Medicine, 28(6), 591–593. doi: 10.19485/j.cnki.issn1007-0931.2016.06.013.

    CrossRef Google Scholar

    Zhang JY, Sun GB, Wang M, Sun XB. 2016. Research advances on cardiac toxicity of arsenic trioxide. Chinese Pharmacology Bulletin, 32(9), 1194–1198 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1978.2016.09.003.

    CrossRef Google Scholar

    Zhang W, Qi LJ, Ning JY, Gao S, Li GJ. 2021. Health hazard assessment of arsenic. Journal of Toxicology, 35(5), 367–372 (in Chinese with English abstract). doi: 10.16421/j.cnki.1002-3127.2021.05.002.

    CrossRef Google Scholar

    Zhang Y, Zhou T, Liu YQ, Song Y, Yang L. 2019. Research progress on DNA methylation in arsenic-induced atherosclerosis. Journal of Hangzhou Normal University:Natural Science Edition, 18(3), 280–284 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-232X.2019.03.010.

    CrossRef Google Scholar

    Zhang YF, Li SH, Zheng LR, Chen JG, Zheng Y. 2017. Evaluation of arsenic sorption and mobility in stream sediment and hot spring deposit in three drainages of the Tibetan Plateau. Applied Geochemistry, 77, 89–101. doi: 10.1016/J.APGEOCHEM.2016.04.006.

    CrossRef Google Scholar

    Zhang Z, Guo HM, Han SB, Gao ZP, Niu XT. 2022a. Controls of Geochemical and Hydrogeochemical Factors on Arsenic Mobility in the Hetao Basin, China. Groundwater, 13230. doi: 10.1016/j.envpol.2019.113455.

    CrossRef Google Scholar

    Zhang Z, Guo HM, Han SB, Niu XT. 2022b. Occurrence characteristics of arsenic in sediments and its control to arsenic enrichment in groundwater: A case study of Hetao Basin, Inner Mongolia. Geology in China (in Chinese with English abstract). https://kns.cnki.net/kcms/detail/11.1167.P.20221031.0948.002.html.

    Google Scholar

    Zhang Z, Guo HM, Liu S, Weng HC, Han SB, Gao ZP. 2020. Mechanisms of groundwater arsenic variations induced by extraction in the western Hetao Basin, Inner Mongolia, China. Journal of Hydrology, (583), 1–13. doi: 10.1016/j.jhydrol.2020.124599. .

    CrossRef Google Scholar

    Zhao Z, Meng Y, Yuan Q, Wang Y, Luan F. 2021. Microbial mobilization of arsenic from iron-bearing clay mineral through iron, arsenate, and simultaneous iron-arsenate reduction pathways. Science of the Total Environment, 763, 144613. doi: 10.1016/j.scitotenv.2020.144613.

    CrossRef Google Scholar

    Zheng Z, Sheng B, Ma C, Zhang H, Gao C, Su F, Xu P. 2012. Relative catalytic efficiency of ldhL- and ldhD- encoded products is crucial for optical purity of lactic acid produced by lactobacillus strains. Applied and Environmental Microbiology, 78(9), 3480–3483. doi: 10.1128/AEM.00058-12.

    CrossRef Google Scholar

    Zhu F, Yang M, Luo ZX, Yu RL, Hu GR, Yan Y. 2020. Bioaccumulation and biotransformation of arsenic in Leptolyngbya boryana. Environmental Science and Pollution Research, 27(24), 29993–30000. doi: 10.1007/s11356-020-09294-y.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(10)

Article Metrics

Article views(1459) PDF downloads(9) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint