2022 Vol. 5, No. 4
Article Contents

Aliou Mamouda, Sylvestre Ganno, Guy Tchoupe Takam Bertin, Arnold Mbita Motto Steven, Hermann Donald Fossi, Jean Paul Nzenti, Joseph Mvondo Ondoa, 2022. Origin and intraplate tectonic setting of mafic magmatic enclaves from the Ngaoundal area, Adamawa-Cameroon: Insights from petrography and geochemistry, China Geology, 5, 579-594. doi: 10.31035/cg2022041
Citation: Aliou Mamouda, Sylvestre Ganno, Guy Tchoupe Takam Bertin, Arnold Mbita Motto Steven, Hermann Donald Fossi, Jean Paul Nzenti, Joseph Mvondo Ondoa, 2022. Origin and intraplate tectonic setting of mafic magmatic enclaves from the Ngaoundal area, Adamawa-Cameroon: Insights from petrography and geochemistry, China Geology, 5, 579-594. doi: 10.31035/cg2022041

Origin and intraplate tectonic setting of mafic magmatic enclaves from the Ngaoundal area, Adamawa-Cameroon: Insights from petrography and geochemistry

More Information
  • In this contribution, detailed field descriptions together with petrographic and bulk-rock major, trace and rare earth elements (REE) data are used to constrain the origin and geodynamic setting of the mafic magmatic enclaves (MMEs) recently discovered within the Pan-African Ngaoundal pluton, Adamawa area, central Cameroon. The investigated MMEs are dark-colored with chilled margins, and display medium to coarse-grain igneous textures. The mineral assemblage is either dominated by K-feldspar and carbonate (group I), or by amphibole and plagioclase (group II), though the overall mineral phases made of amphibole, plagioclase, K-feldspar, and biotite are similar to that of their host syenite but in different proportions. The MMEs in Ngaoundal area are foid-gabbro in composition with SiO2 contents ranging between 41.52% and 43.74% and are contiguous with their host granitoids of intermediate composition (SiO2=57.52% to 58.98%). The host granitoid rocks are metaluminous, and belong to the shoshonitic series. Petrographic and geochemical data have revealed that the Ngaoundal MMEs derived from rapid cooling of hot injected lithospheric mantle-derived magma within cooler host granitoids magma and were emplaced in the intraplate geodynamic setting.

  • 加载中
  • Agrawal S, Guevara M, Verma SP. 2008. Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements. International Geology Review, 50, 1057–1079. doi: 10.2747/0020-6814.50.12.1057.

    CrossRef Google Scholar

    Ahmad T, Tarney J. 1991. Geochemistry and petrogenesis of Garhwal volcanics: Implications for evolution of the Indian lithosphere. Precambrian Research, 50, 69–88. doi: 10.1016/0301-9268(91)90048-F.

    CrossRef Google Scholar

    Barbarin B, Dodge FCW, Kistler RW, Bateman PC. 1989. Mafic inclusions and associated aggregates and dikes in granitoid rocks, central Sierra Nevada Batholith. Analytic Data, U. S. Geological Survey Bulletin, 1899.

    Google Scholar

    Barbarin B. 1988. Field evidence for successive mixing and mingling between the Piolard Diorite and the Saint-Julien-la-Vêtre monzogranite (Nord-Forez, Massif Central, France). Canadian Journal of Earth Sciences, 25, 49–59. doi: 10.1139/e88-005.

    CrossRef Google Scholar

    Barbarin B. 1990. Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada batholith, California. Journal of Geophysical Research, 95, 17747–17756. doi: 10.1029/JB095iB11p17747.

    CrossRef Google Scholar

    Barbarin B. 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: Nature, origin, and relations with the hosts. Lithos, 80, 155–177. doi: 10.1016/j.lithos.2004.05.010.

    CrossRef Google Scholar

    Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contribution to Mineralogy Petrology, 123, 323–333. doi: 10.1007/s004100050159.

    CrossRef Google Scholar

    Bella Nké BE, Njanko T, Mamtani MA, Njonfang E, Rochette P. 2018. Kinematic evolution of the Mbakop Pan-African granitoids (western Cameroon domain): An integrated AMS and EBSD approach. Journal of Structural Geology, 111, 42–63. doi: 10.1016/j.jsg.2018.03.006.

    CrossRef Google Scholar

    Bennett EN, Lissenberg CJ, Cashman KV. 2019. The signifcance of plagioclase textures in mid-ocean ridge basalt (Gakkel Ridge, Arctic Ocean). Contributions to Mineralogy and Petrology, 174 (49), 1–22. doi: 10.1007/s00410-019-1587-1.

    Google Scholar

    Castaing C, Feybesse JL, Thiéblemon D, Triboulet C, Chèvremont P. 1994. Paleogeographical reconstructions of the Pan-African/Brasiliano orogen: Closure of an ocean domain or intracontinental convergence between major blocks? Precambrian Research, 69, 327–344. doi: 10.1016/0301-9268(94)90095-7.

    Google Scholar

    Chappell BW, Wyborn D. 2012. Origin of enclaves in S-type granites of the Lachlan fold belt. Lithos, 154, 235–247. doi: 10.1016/j.lithos.2012.07.012.

    CrossRef Google Scholar

    Chen B, Chen ZC, Jahn BM. 2009. Origin of the mafic enclaves from the Taihang Mesozoic orogen, north China craton. Lithos, 110, 343–358. doi: 10.1016/j.lithos.2009.01.015.

    Google Scholar

    Chen S, Fan S, Yang L, Zhang Y, Zhang L, Liu L, Zhang T. 2018. The characteristics, origin, and significance of mafic microgranular enclaves in the granitoids from the Bailingshan complex, Eastern Tianshan, NW China. Geological Journal, 53, 87–96. doi: 10.1002/gj.3232.

    CrossRef Google Scholar

    Chen S, Niu Y, Sun W, Zhang Y, Li J, Guo P, Sun P. 2015. On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids: Evidence from the Baojishan pluton in the North Qilian orogen, China. Mineralogy and Petrology, 109, 577–596. doi: 10.1007/s00710-015-0383-5.

    Google Scholar

    Cheng Y, Spandler C, Mao J, Rusk BG. 2012. Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China: A case of two-stage mixing of crust- and mantle-derived magmas. Contributions to Mineralogy and Petrology, 164, 659–676. doi: 10.1007/s00410-012-0766-0.

    Google Scholar

    Choe WH, Jwa YJ. 2004. Petrological and geochemical evidences for magma mixing in the Palgongsan Pluton. Geoscience Journal, 8(4), 343–354. doi: 10.1007/s00410-012-0766-0.

    Google Scholar

    Deng JF, Zhao HL, Mo XX, Wu ZX, Luo ZH. 1996. Root-Column Structure of the Chinese Mainland: The Key to Continental Dynamics. Beijing, Geological Publishing House, 14–82 (in Chinese).

    Google Scholar

    Didier J. 1973. Granites and their enclaves: The bearing of enclaves on the origin of granites: Developments in Petrology 3. Amsterdam, Elsevier, 1–393.

    Google Scholar

    Didier J, Barbarin B. 1991. The different types of enclaves in granites-Nomenclature. In Didier J, Barbarin B (eds.), Enclaves and Granite Petrology, Developments in Petrology 13. Amsterdam, Elsevier, 19–24.

    Google Scholar

    D'Lemos RS. 1996. Mixing between granitic and dioritic crystal mushes, Guernsey, Channel Islands, UK. Lithos, 38, 233–257. doi: 10.1016/0024-4937(96)00007-2.

    CrossRef Google Scholar

    Donaire T, Pascual E, Pin C. 2005. Microgranular enclaves as evidence of rapid cooling in granitoid rocks: The case of the Los Pedroches granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149, 247–265. doi: 10.1007/s00410-005-0652-0.

    CrossRef Google Scholar

    Flood RH, Shaw SE. 2014. Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia: Pressure quench cumulates. Lithos, 198–199, 92–102. doi: 10.1016/j.lithos.2014.03.015.

    Google Scholar

    Fossi DH, Ganno S, Nzepang Tankwa M, Soh Tamehe L, Ayonta Kenné P, Kouayep Tchoundi CL, Kankeu B, Nzenti JP. 2022. Petrogenesis and tectonic setting of the Pan-African Deng-Deng intrusive complex in the Lom series, Eastern Cameroon. Journal of African Earth Sciences, 188, 104484. doi: 10.1016/j.jafrearsci.2022.104484.

    CrossRef Google Scholar

    Foster DA, Hyndman DW. 1990. Magma mixing and mingling between synplutonic mafic dikes and granite in Idaho-Bitterroot Batholith. In: The nature and origin of Cordilleran Magmatism, Anderson, J. L. (ed.). Geological Society of America Memoir 174, Boulder, CO, 347–358.

    Google Scholar

    Fozing EM, Kwékam M, Gountié Dedzo M, Asaah Asobo NE, Njanko T, Tcheumenak Kouémo J, Awoum JE, Njonfang E. 2019. Petrography and geochemistry of amphibolites from the Fomopéa Pluton (West Cameroon): Origin and geodynamic setting. Journal of African Earth Sciences, 154, 181–194. doi: 10.1016/j.jafrearsci.2019.03.024.

    CrossRef Google Scholar

    Ganno S, Ngnotué T, Kouankap Nono GD, Nzenti JP. 2016. Structural characterization of outcrop-scale superposed folding in the Kimbi area (NW Cameroon): Implications for the tectonic evolution of the Northwestern Cameroon Pan-African Fold Belt. Earth Sciences, 5(5), 62–63. doi: 10.11648/j.earth.20160505.11.

    CrossRef Google Scholar

    Ganwa AA, Klötzli US, Christoph H. 2016. Evidence for Archean inheritance in the pre-panafrican crust of central Cameroun: Insight from zircon internal structure and LA-Mc ICP-MS U/Pb ages. Journal of African Earth Sciences, 120, 12–22. doi: 10.1016/j.jafrearsci.2016.04.013.

    CrossRef Google Scholar

    Goussi Ngalamo JFG, Sob M, Bisso D, Abdelsalam MG, Atekwana EA, Katumwehe AB, Ekodeck GE. 2018. Lithospheric structure beneath the Central Africa Orogenic Belt in Cameroon from the analysis of satellite gravity and passive seismic data. Tectonophysics, 745, 326–337. doi: 10.1016/j.tecto.2018.08.015.

    CrossRef Google Scholar

    Green TH. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120, (3–4), 347–359. doi: 10.1016/0009-2541(94)00145-X.

    Google Scholar

    Hamdja Ngoniri A, Soh TL, Ganno S, Ngnotue T, Chen Z, Li H, Ayonta KP, Nzenti JP. 2021. Geochronology and petrogenesis of the Pan-African granitoids from Mbondo-Ngazi Tina in the Adamawa-Yade Domain, Central Cameroon. International Journal of Earth Sciences, 110, 2221–2245. doi: 10.1007/s00531-021-02071-3.

    CrossRef Google Scholar

    Hibbard MJ. 1991. Textural anatomy of twelve magma-mixed granitoid systems. In Didier J, Barbarin B (Eds.), Enclaves and granite petrology, developments in petrology. Amsterdam, Elsevier, 431–444.

    Google Scholar

    Janoušek V, Bowes DR, Braithwaite CJR, Rogers G, 2000. Microstructural and mineralogical evidence for limited involvement of magma mixing in the petrogenesis of a Hercynian high-K calc-alkaline intrusion: the Kozarovice granodiorite, Central Bohemian Pluton, Czech Republic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91, 15–26. doi: 10.1130/0-8137-2350-7.15.

    Google Scholar

    Kankeu B, Greiling RO, Nzenti JP, Bassahak J, Hell JV. 2012. Strain partitioning along the Neoproterozoic central Africa shear zone system: structures and magnetic fabrics (AMS) from the Meiganga area, Cameroon. Neues Jahrbuch für Geologie und Palä ontologie – Abhandlungen, 265(1), 27–47. doi: 10.1127/0077-7749/2012/0244.

    CrossRef Google Scholar

    Kazemi K, Kananian A, Xiao Y, Sarjoughian F. 2018. Petrogenesis of Middle-Eocene granitoids and their mafic microgranular enclaves in central Urmia-Dokhtar Magmatic Arc (Iran): Evidence for interaction between felsic and mafic magmas. Geoscience Frontiers, 10, 705–723. doi: 10.1016/j.gsf.2018.04.006.

    CrossRef Google Scholar

    Keutchafo Kouamo NA, Tchatptchet TD, Tezanou NAL, Simeni Wambo NA, Tchouankoue JP, Cucciniello C. 2019. Petrogenesis of basaltic dikes from the Manjo area (Western Cameroon): Insights into the Paleozoic magmatism at the northern margin of the Congo craton in Cameroon. Arabian Journal of Geosciences, 12, 281–295. doi: 10.1007/s12517-019-4424-y.

    CrossRef Google Scholar

    Kumar S, Pieru T, Rino V, Lyngdo BC, 2005. Microgranular enclaves in Neoproterozoic granitoids of South Khasi hill, Meghalaya plateau, Northeast India: Field evidence of interacting coeval mafic and felsic magmas. Journal of Geological Society of India, 65, 629–633.

    Google Scholar

    Kumar S, Rino V. 2006. Mineralogy and geochemistry of microgranular enclaves Nin Palaeoproterozoic Malanjkhand granitoids, central India: Evidence of magma mixing, mingling, and chemical equilibration. Contributions to Mineralogy and Petrology, 152, 591–609. doi: 10.1007/s00410-006-0122-3.

    CrossRef Google Scholar

    Laflèche MR, Dupuy C, Dostal J. 1992. Tholeiitic volcanic rocks of the late Archaean Blake River group, southern Abitibi Greenstone Belt: Origin and geodynamic implications. Canadian Journal of Earth Sciences, 29, 1448–1458. doi: 10.1139/e92-11.

    CrossRef Google Scholar

    Lee C-TA, Morton DM, Farner MJ, Moitra P. 2015. Field and model constraints on silicic melt segregation by compaction/hindered settling: The role of water and its effect on latent heat release. The American Mineralogist, 100, 1762–1777. doi: 10.2138/am-2015-5121.

    CrossRef Google Scholar

    Liu P, Mao JW, Yao W, Wang XX, Jia LH, Yang HW. 2017. Petrogenesis of the mafic microgranular enclaves (MMEs) and their host granodiorites from the Zijinshan intrusion along the Middle-Lower Yangtze River Valley: implications for geodynamic setting and mineralization. Lithos, 288–289, 1–19. doi: 10.1016/j.lithos.2017.07.010.

    Google Scholar

    Lowell GR, Young GJ. 1999. Interaction between coeval mafic and felsic melts in the St. Francois Terrane of Missouri, USA. Precambrian Research, 95, 69–88. doi: 10.1016/S0301-9268(98)00127-2.

    Google Scholar

    Ma XX, Meert JG, Xu ZQ, Zhao ZB. 2017. Evidence of magma mixing identified in the Early Eocene Caina pluton from the Gangdese Batholith, southern Tibet. Lithos, 278–281, 126–139. doi: 10.1016/j.lithos.2017.01.020.

    Google Scholar

    Maas R, Nicholls IA, Legg C. 1997. Igneous and metamorphic enclaves in the S-type Deddick Granodiorite, Lachlan Fold Belt, SE Australia: Petrographic, geochemical and Nd-Sr isotopic evidence for crustal melting and magma maxing. Journal of Petrology, 38, 815–841. doi: 10.1093/petroj/38.7.815.

    CrossRef Google Scholar

    Mbassa BJ, Njonfang E, Ngwa CN, Grégoire M, Itiga Z, Kamgang P, Mfomou Ntepe Viñas, JS, Benoit M, Dili-Rake J, Mbossi EF. 2020. Mineral chemistry and descriptive petrology of the Pan-African high-K granitoids and associated mafic rocks from Mbengwi, NW Cameroon: Petrogenetic constraints and geodynamic setting. Journal of Geosciences and Geomatics, 8(2), 58–75. doi: 10.12691/jgg-8-2-2.

    CrossRef Google Scholar

    McDonough WF. 1990. Constraints on the composition of the continental lithospheric mantle. Earth Planet Science Letters, 101, 1–18. doi: 10.1016/0012-821X(90)90119-I.

    CrossRef Google Scholar

    McDonough, WF, Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4.

    Google Scholar

    Melluso L, Cucciniello C, Le Roex AP, Morra V. 2016. The geochemistry of primitive volcanic rocks of the Ankaratra volcanic complex, and source enrichment processes in the genesis of the Cenozoic magmatism in Madagascar. Geochimica et Cosmochimica Acta, 185, 435–452. doi: 10.1016/j.gca.2016.04.005.

    CrossRef Google Scholar

    Mo XX, Luo ZH, Deng JF, Yu XH, Liu CD, Chen HW, Yuan WM, Liu YH. 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13, 403–414 (in Chinese with English abstract).

    Google Scholar

    Nelson ST, Montana A. 1992. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. American Mineralogist, 77, 1242–1249.

    Google Scholar

    Nomo Negue E, Tchameni R, Vanderhaeghe O, Fengyue S, Barbey P, Tekoum L, Fosso, PM, Eglinger A, Saha-Fouotsa AN. 2017. Structure and LA-ICP-MS zircon U-Pb dating of syntectonic plutons emplaced in the Pan-African Banyo-Tcholliré shear zone (central north Cameroun). Journal of African Earth Science, 131, 251–271. doi: 10.1016/j.jafrearsci.2017.04.002.

    CrossRef Google Scholar

    Ordonez-Calderon JC, Polat A, Fryer BJ, Appel PWU, van Gool J, Dilek Y. 2009. Geochemistry and geodynamic origin of the Mesoarchea Ujarassuit and Ivisaartoq greenstone belts, SW Greenland. Lithos, 113, 133–157. doi: 10.1016/j.lithos.2008.11.005.

    CrossRef Google Scholar

    Pearce JA, Harris NBW, Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983. doi: 10.1093/petrology/25.4.956.

    CrossRef Google Scholar

    Pereira FS, Maria MLS, Conceição H, Bertotti AL. 2020. Age, composition, and source of the Macururé Mafic Suite, Southern Borborema Province, Brazil. Brazilian Journal of Geology, 50(2), 1–22. doi: 10.1590/2317-4889202020190105.

    CrossRef Google Scholar

    Polat A, Peter WU, Brian JF. 2011. An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to maficvolcanic rocks, SW Greenland: Implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth. Gondwana Research, 20, 255–283. doi: 10.1016/j.gr.2011.01.007.

    CrossRef Google Scholar

    Qin JF, Lai SC, Li YF. 2008. Slab breakoff model for the Triassic post-collisional adakitic granitoids in the Qinling orogenic velt, central China: Zircon U-Pb ages, geochemistry and Sr-Nd-Pb isotopic constaints. International Geology Review, 50, 1080–1104. doi: 10.2747/0020-6814.50.12.1080.

    CrossRef Google Scholar

    Raza A, Mondal MEA. 2019. Geochemistry of the mafic metavolcanic rocks of Mauranipur-Babina greenstone belt, Bundelkhand Craton, Central India: Implication for tectonic settings during the Archaean, in Mondal MEA. (ed.), Geological evolution of the Precambrian Indian Shield. Society of Earth Scientists Series. doi: 10.1007/978-3-319-89698-4.22.

    Google Scholar

    Rudnick RL, Gao S. 2004. Composition of the continental crust. Treatise on Geochemistry, 3, 1–64.

    Google Scholar

    Sarjoughian F, Kananian A, Haschke M, Ahmadian J, Ling W, 2012. Magma mingling and hybridization in the Kuhe Dom pluton, Central Iran. Journal of Asian Earth Sciences, 54–55, 49–63. doi: 10.1016/j.jseaes.2012.03.013.

    Google Scholar

    Shervais JW. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59, 101–118. doi: 10.1016/0012-821X(82)90120-0.

    CrossRef Google Scholar

    Silva M, Neiva A, Whitehouse MJ. 2000. Geochemistry of enclaves and host granites from the Nelas area, central Portugal. Lithos, 50, 153–170. doi: 10.1016/S0024-4937(99)00053-5.

    CrossRef Google Scholar

    Smith EI, Sánchez A, Walker JD, Wang K. 1999. Geochemistry of mafic magmas in the Hurricane Volcanic Field, Utah: Implications for small- and large-scale chemical variability of the lithospheric mantle. The Journal of Geology, 107(4), 433–448. doi: 10.1086/314355.

    CrossRef Google Scholar

    Stern CR, Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123, 263–28. doi: 10.1007/s004100050155.

    CrossRef Google Scholar

    Sun JF, Yang JH, Wu FY, Li XH, Yang YH, Xie LW, Wilde SA. 2010. Magma mixing controlling the origin of the Early Cretaceous Fangshan granitic pluton, North China Craton: In situ U-Pb age and Sr-, Nd-, Hf- and O-isotope evidence. Lithos, 120, 421–438. doi: 10.1016/j.lithos.2010.09.002.

    CrossRef Google Scholar

    Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, In Sauders AD, and Norry MJ (eds), Magmatism in the ocean basin. Geological Society of London Special Publication, 42, 313–345. doi: 10.1144/GSL.SP.1989.042.01.19.

    Google Scholar

    Tanko Njiosseu EL, Nzenti JP, Njanko T, Kapajika B, Nedelec A. 2005. New U-Pb zircon ages from Tonga (Cameroon): Coexisting Eburnean-Transamazonian (2.1 Ga) and Pan-African (0, 6 Ga) imprints. Comptes Rendus Géosciences, 337, 551–562. doi: 10.1016/j.crte.2005.02.005.

    Google Scholar

    Tchakounté J, Eglinger A, Toteu SF, Zeh A, Nkoumbou C, Mvondo-Ondoa J, Penaye J, de Wit DM, Barbey P. 2017. The Adamawa- Yadé domain, a piece of Archaean crust in the Neoproterozoic Central African Orogenic Belt (Bafia area, Cameroon). Precambrian Research, 299, 210–229. doi: 10.1016/j.precamres.2017.07.001.

    CrossRef Google Scholar

    Tchameni R, Pouclet A, Penaye J, Ganwa AA, Toteu SF. 2006. Petrography and geochemistry of the Ngaoundere Pan-African granitoids in Central North Cameroon: implications for their sources and geological setting. Journal of African Earth Sciences, 44, 511–529. doi: 10.1016/j.jafrearsci.2005.11.017.

    CrossRef Google Scholar

    Tchouankoue JP, Simeni Wambo NAS, Kagou Dongmo A, Li XH, 2014. 40Ar/39Ar dating of basaltic dykes swarm in Western Cameroon: Evidence of Late Paleozoic and Mesozoic magmatism in the corridor of the Cameroon Line. Journal of African Earth Sciences, 93, 14–22. doi: 10.1016/j.jafrearsci.2014.01.006.

    Google Scholar

    Tindle AG. 1991. Trace element behaviour in microgranular enclaves from granitic rocks. In: Enclaves and Granite Petrology. Developments in Petrology 13, Didier J, Barbarin B (eds.). Elsevier, Amsterdam, 313–332.

    Google Scholar

    Turnbull R, Weaver S, Tulloch A, Cole J, Handler M, Ireland T. 2010. Field and geochemical constraints on mafic-felsic interactions, and processes in high-level arc magma chambers: An example from the Halfmoon Pluton, New Zealand. Journal of Petrology, 51, 1477–1505. doi: 10.1093/petrology/egq026.

    CrossRef Google Scholar

    Vernon RH, Etheridge MA, Wall VJ, 1988. Shape and microstructure of microgranitoid enclaves: Indicators of magma mingling and flows. Lithos, 22, 1–11. doi: 10.1016/0024-4937(88)90024-2.

    Google Scholar

    Vernon RH. 1984. Microgranitoid enclaves in granites: Globules of hybrid magma quenched in a plutonic environment. Nature, 309, 438–439. doi: 10.1038/309438a0.

    CrossRef Google Scholar

    Vernon RH. 1990. Crystallization and hybridism in microgranitoid enclave magmas: microstructural evidence. Journal of Geophysical Research, 95, 17849–17859. doi: 10.1029/JB095iB11p17849.

    CrossRef Google Scholar

    Vernon RH. 2014. Microstructures of microgranitoid enclaves and the origin of S-type granitoids. Australian Journal of Earth Sciences, 61, 227–239. doi: 10.1080/08120099.2014.886623.

    CrossRef Google Scholar

    Wang XX, Wang T, Ilmari H, Lu XX. 2005. Genesis of mafic enclaves from rapakivi-textured granites in the Qinling and its petrological significance: Evidence of elements and Nd, Sr isotopes. Acta Petrologica Sinica, 21, 935–946 (in Chinese with English abstract).

    Google Scholar

    Wang ZH, Wilde SA, Wang KY, Yu LJ. 2004. A MORB-arc basalt–adakite association in the 2. 5 Ga Wutai greenstone belt: Late Archean magmatism and crustal growth in the North China Craton. Precambrian Research, 131, 323–343. doi: 10.1016/j.precamres.2003.12.014.

    CrossRef Google Scholar

    Whitney DL, Evans BW. 2010. Abbreviations for names of rock forming minerals. American Minerologist, 95, 185–187. doi: 10.2138/am.2010.3371.

    CrossRef Google Scholar

    Wyborn D. 2013. Reply-Origin of enclaves in S-type granites of the Lachlan Fold Belt. Lithos, 175–176, 353–354. doi: 10.1016/j.lithos.2013.04.025.

    Google Scholar

    Yang JH, Wu FY, Chung SL, Wilde SA, Chu MF. 2004. Multiple sources for the origin of granites: Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China. Geochimica et Cosmochimica Acta, 68, 4469–4483. doi: 10.1016/j.gca.2004.04.015.

    Google Scholar

    Zhang SH, Zhao Y. 2017. Cogenetic origin of mafic microgranular enclaves in calc-alkaline granitoids: The Permian plutons in the northern North China Block. Geosphere, 13(2), 1–36. doi: 10.1130/GES01407.1.

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(1984) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint